Table 1.9: Hyperbolic PDE’s (Wave) breakdown of results. Time in seconds
|
||||||||
# |
PDE |
description |
Mathematica
| Maple
|
hand solved? |
Animated? |
||
|
|
|
result |
time |
result |
time |
|
|
|
||||||||
334 |
Finite length string |
General solution for both ends fixed. Domain is \(0\dots L\) |
✗ |
5.788 |
✓ |
5.997 |
Yes |
|
335 |
Finite length string |
both ends fixed, inital position zero (special case) |
✓ |
31.082 |
✓ |
1.97 |
Yes |
Yes |
336 |
Finite length string |
both ends fixed, inital velocity zero (special case) |
✓ |
31.042 |
✓ |
1.723 |
Yes |
Yes |
337 |
Finite length string |
both ends fixed but domain is \(-\pi \dots \pi \). zero intial position, non zero initial velocity |
✗ |
51.161 |
✓ |
15.36 |
Yes |
Yes |
338 |
Finite length string |
both ends fixed but domain is \(-1 \dots 1\). intial position is an impulse, zero initial velocity |
✗ |
5.785 |
✓ |
1.727 |
Yes |
|
339 |
Finite length string |
Logan book, page 28. Both ends fixed |
✗ |
0.422 |
✓ |
0.375 |
|
|
340 |
Finite length string |
non-zero initial velocity. Both ends fixed |
✗ |
27.558 |
✓ |
1.625 |
|
|
341 |
Finite length string |
Logan book page 149) |
✗ |
1.244 |
✓ |
2.446 |
|
|
342 |
Finite length string |
Haberman 8.5.2 (a) |
✗ |
1.242 |
✓ |
10.801 |
|
|
343 |
Finite length string |
Haberman 8.5.2 (b) |
✗ |
1.541 |
✓ |
7.278 |
Yes |
|
344 |
Finite length string |
Both I.C. not zero |
✓ |
40.463 |
✓ |
2.398 |
|
|
345 |
Finite length string |
With constant source |
✗ |
0.965 |
✓ |
6.548 |
|
|
346 |
Finite length string |
Logan page 213 |
✗ |
0.915 |
✓ |
4.085 |
|
|
347 |
Finite length string |
Telegraphy PDE |
✗ |
31.304 |
✓ |
3.083 |
|
|
348 |
Finite length string |
Dispersion term present (general case) |
✗ |
1.252 |
✓ |
4.715 |
Yes |
|
349 |
Finite length string |
Dispersion term present |
✗ |
31.593 |
✓ |
20.208 |
Yes |
|
350 |
Finite length string |
Dispersion term present (specific case) |
✗ |
31.468 |
✓ |
3.76 |
Yes |
Yes |
351 |
Finite length string |
non-zero initial position |
✓ |
31.137 |
✓ |
9.71 |
|
|
352 |
Finite length string |
With source |
✗ |
30.99 |
✓ |
10.826 |
|
|
353 |
Finite length string |
Right end free (general case) |
✗ |
0.969 |
✓ |
7.717 |
Yes |
|
354 |
Finite length string |
Right end free, zero initial velocity (general case) |
✗ |
0.967 |
✓ |
5.08 |
Yes |
|
355 |
Finite length string |
Right end free, zero initial velocity (special case) |
✗ |
33.775 |
✓ |
2.87 |
Yes |
Yes |
356 |
Finite length string |
Right end free, zero initial velocity, damping present (general case) |
✗ |
1.28 |
✓ |
6.279 |
Yes |
|
357 |
Finite length string |
Right end free, zero initial velocity, damping present (special case, underdamped) |
✗ |
49.27 |
✓ |
5.674 |
Yes |
Yes |
358 |
Finite length string |
Right end free, zero initial velocity, damping present (special case, critical damped) |
✗ |
48.952 |
✓ |
5.414 |
Yes |
Yes |
359 |
Finite length string |
Right end free, zero initial velocity, damping present (special case, over damped) |
✗ |
49.823 |
✓ |
4.132 |
Yes |
Yes |
360 |
Finite length string |
I.C. at different times, right end free, with source |
✗ |
1.153 |
✓ |
54.131 |
Yes |
|
361 |
Finite length string |
Right end oscillates |
✗ |
30.978 |
✓ |
11.337 |
|
|
362 |
Finite length string |
Perioidic B.C. |
✗ |
7.439 |
✗ |
2.564 |
|
|
363 |
Finite length string |
Mixed B.C. |
✗ |
21.322 |
✗ |
3.43 |
|
|
364 |
Finite length string |
Left end fixed, right end non-homogeneous Neumann BC. Zero initial conditions |
✗ |
0.963 |
✓ |
4.239 |
Yes |
Yes |
365 |
Semi-infinite domain |
Left end fixed, (general case) |
✓ |
2.14 |
✗ |
3.623 |
Yes |
|
366 |
Semi-infinite domain |
Left end fixed with specific initial position |
✓ |
22.917 |
✓ |
3.145 |
Yes |
|
367 |
Semi-infinite domain |
Logan page 115, left end fixed with source |
✓ |
0.183 |
✓ |
2.443 |
|
|
368 |
Semi-infinite domain |
Left moving boundary condition |
✓ |
7.585 |
✓ |
2.458 |
|
|
369 |
Semi-infinite domain |
moving Left end |
✓ |
17.273 |
✓ |
1.045 |
|
|
370 |
Semi-infinite domain |
I.C. at \(t=1\) |
✓ |
0.01 |
✓ |
0.33 |
|
|
371 |
Semi-infinite domain |
B.C. at \(x=1\) |
✗ |
10.107 |
✓ |
0.543 |
|
|
372 |
Semi-infinite domain |
Left end free. zero initial velocity (general solution) |
✗ |
2.494 |
✓ |
0.341 |
|
|
373 |
Semi-infinite domain |
Left end free. zero initial velocity (Special solution) |
✓ |
3.478 |
✓ |
0.713 |
Yes |
Yes |
374 |
Semi-infinite domain |
Left end fixed. zero initial velocity (Special solution) |
✓ |
2.6 |
✓ |
0.536 |
Yes |
Yes |
375 |
Semi-infinite domain |
Left end free. zero initial position (general solution) |
✗ |
2.75 |
✓ |
0.369 |
|
|
376 |
Semi-infinite domain |
Left end free. Non zero initial position and velocity (general solution) |
✗ |
3.196 |
✓ |
0.321 |
|
|
377 |
Semi-infinite domain |
Left end free with source |
✓ |
0.182 |
✓ |
0.246 |
|
|
378 |
Infinite domain |
General case. \(u_{tt} = u_{xx}\) with \(u(x,0)=f(x),u_t(x,0)=g(x)\) |
✓ |
0.062 |
✓ |
0.056 |
|
|
379 |
Infinite domain |
General case. No IC given. \(u_{tt} + u_{xt} = c^2 u_{xx}\) |
✓ |
0.005 |
✓ |
0.195 |
|
|
380 |
Infinite domain |
\(u_{tt}= c^2 u_{xx} + f(x,t)\), IC at \(t=1\),\(u(x,1) = g(x),u_t(x,1)=h(x)\) |
✗ |
0.008 |
✓ |
1.505 |
|
|
381 |
Infinite domain |
No source. \(u_{tt} = u_{xx}\), with \(u(x,0) =e^{-x^2},u_t(x,0)=1\) |
✓ |
0.048 |
✓ |
0.084 |
|
|
382 |
Infinite domain |
With source term. \(u_{tt} = u_{xx} + m\) |
✓ |
0.01 |
✓ |
0.105 |
|
|
383 |
Infinite domain |
non-linear (Solitons) \(u_t +6 u(x,t) u_x + u_{xxx} = 0\) |
✓ |
0.03 |
✓ |
0.166 |
Yes |
Yes |
384 |
Infinite domain |
Inhomogeneous PDE \(3 u_{xx}- u_{tt} + u_{xt}=1\) |
✓ |
0.003 |
✓ |
0.105 |
|
|
385 |
Infinite domain |
Practice exam problem Math 5587 |
✓ |
0.074 |
✓ |
0.086 |
|
|
386 |
Infinite domain |
Practice exam problem Math 5587 |
✓ |
0.031 |
✓ |
0.056 |
|
|
387 |
Infinite domain |
Practice exam problem Math 5587 |
✓ |
24.937 |
✓ |
0.132 |
|
|
388 |
Infinite domain |
zero initial velocity |
✓ |
0.075 |
✓ |
0.197 |
Yes |
Yes |
389 |
Infinite domain |
zero initial velocity |
✓ |
0.078 |
✓ |
0.316 |
Yes |
Yes |
390 |
Infinite domain |
General case \(u_{tt} = u_{xx}\) with \(u(x,0)=\sin x, u_t(x,0)=-2 x e^{-x^2}\) |
✓ |
0.134 |
✓ |
0.087 |
|
|
391 |
Infinite domain |
General case. \(u_{tt} =u_{xx}\) dAlembert solution, box function as initial position |
✓ |
0.032 |
✓ |
0.118 |
Yes |
Yes |
392 |
Infinite domain |
\(u_{tt}=4 u_{xx}+ \cos (t)\) dAlembert solution with \(u(x,0)=\sin x,u_t(x,0)=\cos x\) |
✓ |
0.095 |
✓ |
0.116 |
Yes |
Yes |
393 |
Infinite domain |
\(u_{tt}=c^2 u_{xx}\) dAlembert solution with \(u(x,0)=\delta (x-a),u_t(x,0)=0\) |
✗ |
35.84 |
✓ |
0.06 |
Yes |
|
394 |
Infinite domain |
system of 2 inhomogeneous linear hyperbolic system with constant coefficients |
✓ |
0.279 |
✗ |
0.359 |
|
|
395 |
Cartesian coordinates |
Rectangular membrane. Fixed on all edges, General solution |
✗ |
0.028 |
✓ |
184.836 |
Yes |
|
396 |
Cartesian coordinates |
Rectangular membrane. Fixed on all edges, zero velocity. Specific example |
✗ |
0.023 |
✓ |
2.036 |
Yes |
Yes |
397 |
Cartesian coordinates |
All 4 edges fixed, zero initial velocity, Specific example |
✓ |
5.053 |
✓ |
12.351 |
Yes |
Yes |
398 |
Cartesian coordinates |
All 4 edges fixed, zero initial velocity, Specific example, delta in center |
✓ |
1.229 |
✓ |
10.169 |
Yes |
Yes |
399 |
Cartesian coordinates |
All 4 edges fixed |
✓ |
0.997 |
✓ |
5.191 |
|
|
400 |
Cartesian coordinates |
All edges fixed (Haberman 8.5.5 (a) |
✗ |
0.003 |
✗ |
2.079 |
|
|
401 |
Cartesian coordinates |
2 edgs fixed, 2 free, zero initial velocity |
✗ |
0.003 |
✓ |
9.615 |
|
|
402 |
Cartesian coordinates |
All 4 edges fixed, zero initial velocity, general solution |
✓ |
0.1 |
✗ (Timed out) |
600. |
Yes |
|
403 |
Cartesian coordinates |
With damping |
✗ |
0.003 |
✓ |
18.699 |
|
|
404 |
Cartesian coordinates |
On the whole plane |
✓ |
0.104 |
✗ |
0.086 |
|
|
405 |
Polar coordinates |
no \(\theta \) dependency, fixed boundary, general case |
✓ |
0.723 |
✓ |
0.785 |
Yes |
|
406 |
Polar coordinates |
no \(\theta \) dependency. Specific example. Both initial conditions not zero |
✓ |
31.224 |
✓ |
42.668 |
|
|
407 |
Polar coordinates |
no \(\theta \) dependency. Specific example. Both initial conditions not zero |
✓ |
31.077 |
✓ |
6.716 |
Yes |
Yes |
408 |
Polar coordinates |
no \(\theta \) dependency. Using integral transforms. Source present. Specific example |
✗ |
1.772 |
✓ |
10.237 |
|
|
409 |
Polar coordinates |
no \(\theta \) dependency. Using integral transforms. Source present. Specific example |
✗ |
1.954 |
✓ |
3.56 |
|
|
410 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, general solution |
✗ |
0.004 |
✗ |
1.901 |
Yes |
|
411 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial velocity, general solution |
✗ |
0.004 |
✗ |
4.776 |
Yes |
|
412 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial velocity, specific example |
✗ |
0.004 |
✗ |
1.127 |
Yes |
Yes |
413 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial position, specific example |
✗ |
0.005 |
✗ |
1.689 |
Yes |
Yes |
414 |
Polar coordinates |
\(\theta \) dependency, fixed on edges, zero initial position with internal source (Haberman 8.5.5. (b) |
✗ |
0.027 |
✗ |
0.398 |
Yes |
|
415 |
Spherical coordinates |
No I.C. no B.C. |
✗ |
0.031 |
✓ |
3.537 |
|
|
416 |
Cylindrical coordinates |
No I.C. no B.C. |
✗ |
0.003 |
✓ |
0.268 |
|
|
|
||||||||
|
||||||||
|
||||||||
|
||||||||
|