2.1.35 \(u_t+u u_x=x\) with \(u(x,0)=f(x)\) Example 3.5.11 in Lokenath Debnath.

problem number 35

Added June 2, 2019.

From example 3.5.11, page 219 nonlinear pde’s by Lokenath Debnath, 3rd edition.

Solve for \(u(x,y)\) \[ u_t+u u_x=x \] with \(u(x,0)=f(x)\)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] +u[x,t]*D[u[x, t], x] ==x; 
ic  = u[x,0]==f[x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde,ic}, u[x, t], {x, t}], 60*10]];
 

Failed Kernel error

Maple

restart; 
pde := diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)=x; 
ic  := u(x,0)=f(x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,t))),output='realtime'));
 

\[u \left ( x,t \right ) ={{\rm e}^{t}}f \left ( \RootOf \left ( \left ( f \left ( {\it \_Z} \right ) +{\it \_Z} \right ) \left ( f \left ( {\it \_Z} \right ) {{\rm e}^{2\,t}}-2\,x{{\rm e}^{t}}+{{\rm e}^{2\,t}}{\it \_Z}-f \left ( {\it \_Z} \right ) +{\it \_Z} \right ) \right ) \right ) +{{\rm e}^{t}}\RootOf \left ( \left ( f \left ( {\it \_Z} \right ) +{\it \_Z} \right ) \left ( f \left ( {\it \_Z} \right ) {{\rm e}^{2\,t}}-2\,x{{\rm e}^{t}}+{{\rm e}^{2\,t}}{\it \_Z}-f \left ( {\it \_Z} \right ) +{\it \_Z} \right ) \right ) -x\]

____________________________________________________________________________________