Added June 3, 2019.
Problem 3.10 nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\) \[ (u_x+u_y)^2-u^2=0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = (D[u[x, y], x] +D[u[x, y], y])^2-u[x,y]^2== 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde ,u[x, y], {x, y}], 60*10]];
\begin {align*} & \left \{u(x,y)\to e^{-x} c_1(y-x)\right \}\\& \left \{u(x,y)\to e^x c_1(y-x)\right \}\\ \end {align*}
Maple ✓
restart; pde :=(diff(u(x,y),x) + diff(u(x,y),y))^2-u(x,y)^2= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,y))),output='realtime'));
\[u \left ( x,y \right ) ={\it \_C1}\,{{\rm e}^{{\frac {{\it \_c}_{{2}}y+x}{{\it \_c}_{{2}}+1}}}}\]
____________________________________________________________________________________