Added December 27, 2018.
Taken from https://en.wikipedia.org/wiki/List_of_nonlinear_partial_differential_equations
Born Infeld. Solve for \(u(x,t)\) \[ (1-u_t^2) u_{xx} + 2 u_x u_t u_{xt} - (1+ u_x^2) u_{tt}=0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = (1 - D[u[x, t], t]^2)*D[u[x, t], {x, 2}] + 2*D[u[x, t], x]*D[u[x, t], t]*D[D[u[x, t], x], t] - (1 + D[u[x, t], x]^2)*D[u[x, t], {t, 2}] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, t], {x, t}], 60*10]];
\[\{\{u(x,t)\to c_1(t+x)+c_2(t-x)\}\}\]
Maple ✓
restart; pde :=(1-diff(u(x,t),t)^2)*diff(u(x,t),x$2)+2*diff(u(x,t),x)*diff(u(x,t),t)*diff(u(x,t),x,t)-(1+diff(u(x,t),x)^2)*diff(u(x,t),t$2)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,t))),output='realtime'));
\[u \left (x , t\right ) = c_{7} \left (\tanh ^{3}\left (c_{1}+c_{2} \left (-t +x \right )\right )\right )+c_{5} \tanh \left (c_{1}+c_{2} \left (-t +x \right )\right )+c_{4}\]
____________________________________________________________________________________