2.15.12 Dym equation \(u_t =u^3 u_{xxx}\)

problem number 121

Added December 27, 2018.

Taken from https://en.wikipedia.org/wiki/List_of_nonlinear_partial_differential_equations

Dym equation. Solve for \(u(x,t)\) \[ u_t =u^3 u_{xxx} \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], t] == u[x, t]^3*D[u[x, t], {x, 3}]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, t], {x, t}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(u(x,t),t)=u(x,t)^3 * diff(u(x,t),x$3); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,t),'build')),output='realtime'));
 

\[u \left (x , t\right ) = \frac {\RootOf \left (c_{3}+x -\left (\int _{}^{\mathit {\_Z}}\frac {1}{\RootOf \left (c_{2}+2 \left (\int _{}^{\mathit {\_Z}}\frac {\mathit {\_h}}{\mathit {\_h}^{2}+2 2^{\frac {1}{3}} \left (-\mathit {\_c}_{1}^{2}\right )^{\frac {1}{3}} \RootOf \left (c_{1} 2^{\frac {1}{3}} \left (-\mathit {\_c}_{1}^{2}\right )^{\frac {1}{3}} \mathit {\_h} \AiryBi \left (\mathit {\_Z} \right )+2 c_{1} \mathit {\_c}_{1} \AiryBi \left (1, \mathit {\_Z}\right )+2^{\frac {1}{3}} \left (-\mathit {\_c}_{1}^{2}\right )^{\frac {1}{3}} \mathit {\_h} \AiryAi \left (\mathit {\_Z} \right )+2 \mathit {\_c}_{1} \AiryAi \left (1, \mathit {\_Z}\right )\right )}d\mathit {\_h} \right )-\ln \left (\mathit {\_f} \right )\right )}d\mathit {\_f} \right )\right )}{\left (-3 t \mathit {\_c}_{1}+c_{4}\right )^{\frac {1}{3}}}\] has RootOf

____________________________________________________________________________________