Added May 25, 2019.
Problem 7.9.1 (a) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside circular cylinder subject to boundary conditions \(u(r,\theta ,0)=f(r,\theta )\), \(u(r,\theta ,H)=0\), \(u(a,\theta ,z)=0\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {u[r, theta, 0] == f[r, theta], u[r, theta, H] == 0, u[a, theta, z] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc := u(r, theta, 0) = f(r, theta), u(r, theta, H) = 0, u(a, theta, z) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.1 (b) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside circular cylinder subject to boundary conditions \(u(r,\theta ,0)=f(r) \sin (7\theta )\), \(u(r,\theta ,H)=0\), \(u(a,\theta ,z)=0\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {u[r, theta, 0] == f[r]*Sin[7*theta], u[r, theta, H] == 0, u[a, theta, z] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc := u(r, theta, 0) = f(r)*sin(7*theta), u(r, theta, H) = 0, u(a, theta, z) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.1 (c) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside circular cylinder subject to boundary conditions \(u(r,\theta ,0)=0\), \(u(r,\theta ,H)=f(r) \cos (3 \theta )\), \(u_r(a,\theta ,z)=0\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {u[r, theta, 0] == 0, u[r, theta, H] == f[r]*Cos[3*theta], Derivative[1,0,0][u][a, theta, z] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc := u(r, theta, 0) = 0, u(r, theta, H) = f(r)*cos(3*theta), eval(diff(u(r,theta,z),r),r=a)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.1 (d) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside circular cylinder subject to boundary conditions \(u_z(r,\theta ,0)=f(r) \sin (3 \theta )\), \(u_z(r,\theta ,H)=0\), \(u_r(a,\theta ,z)=0\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {Derivative[0,0,1][u][r, theta, 0] == f[r]*Sin[3*theta], Derivative[0,0,1][u][r, theta, H] == 0, Derivative[1,0,0][u][a, theta, z] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc:=eval(diff(u(r,theta,z),z),z=0)=f(r)*sin(3*theta), eval(diff(u(r,theta,z),z),z=H)= 0, eval(diff(u(r,theta,z),r),r=a)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.1 (e) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside circular cylinder subject to boundary conditions \(u_z(r,\theta ,0)=f(r,\theta )\), \(u_z(r,\theta ,H)=0\), \(u_r(a,\theta ,z)=0\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {Derivative[0,0,1][u][r, theta, 0] == f[r,theta], Derivative[0,0,1][u][r, theta, H] == 0, Derivative[1,0,0][u][a, theta, z] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc:=eval(diff(u(r,theta,z),z),z=0)=f(r,theta), eval(diff(u(r,theta,z),z),z=H)= 0, eval(diff(u(r,theta,z),r),r=a)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.2 (a) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside semicircular cylinder subject to boundary conditions \(u(r,\theta ,0)=0\), \(u(r,\theta ,H)=f(r,\theta )\), \(u(r,0,z)=0\), \(u(r,\pi ,z)=0\), \(u(a,\theta ,z)=0\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {u[r, theta, 0] == 0, u[r, theta, H] == f[r,theta], u[r, 0, z] == 0,u[r,Pi,z]==0,u[a,theta,z]==0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0,theta>0,theta<Pi}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc := u(r,theta,0)=0, u(r,theta,H)= f(r,theta), u(r,0,z)=0, u(r,Pi,z)=0,u(a,theta,z)=0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0,theta>0,theta<Pi),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.2 (b) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside semicircular cylinder subject to boundary conditions \(u(r,\theta ,0)=0\), \(u_z(r,\theta ,H)=0\), \(u(r,0,z)=0\), \(u(r,\pi ,z)=0\), \(u(a,\theta ,z)=g(\theta ,z)\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {u[r, theta, 0] == 0, Derivative[0,0,1][u][r, theta, H] == 0, u[r, 0, z] == 0,u[r,Pi,z]==0,u[a,theta,z]==g[theta,z]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0,theta>0,theta<Pi}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc := u(r,theta,0)=0, eval(diff(u(r,theta,z),z),z=H)=0, u(r,0,z)=0, u(r,Pi,z)=0,u(a,theta,z)=g(theta,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0,theta>0,theta<Pi),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 25, 2019.
Problem 7.9.2 (c) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside semicircular cylinder subject to boundary conditions \(u_z(r,\theta ,0)=0\), \(u_z(r,\theta ,H)=0\), \(u_\theta (r,0,z)=0\), \(u_\theta (r,\pi ,z)=0\), \(u_r(a,\theta ,z)=g(\theta ,z)\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {Derivative[0,0,1][u][r, theta, 0] == 0, Derivative[0,0,1][u][r, theta, H] == 0, Derivative[0,1,0][u][r, 0, z] == 0,Derivative[1,0,0][u][r,Pi,z]==0,Derivative[1,0,0][u][a,theta,z]==g[theta,z]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0,theta>0,theta<Pi}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc:=eval(diff(u(r,theta,z),z),z=0)=0, eval(diff(u(r,theta,z),z),z=H)=0, eval(diff(u(r,theta,z),theta),theta=0)=0, eval(diff(u(r,theta,z),theta),theta=Pi)=0,eval(diff(u(r,theta,z),r),r=a)=g(theta,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0,theta>0,theta<Pi),output='realtime'));
sol=()
____________________________________________________________________________________
Added May 26, 2019.
Problem 7.9.2 (d) from Richard Haberman Applied Partial Differential Equations, 4th edition.
Solve Laplace PDE inside semicircular cylinder subject to boundary conditions \(u(r,\theta ,0)=0\), \(u(r,0,z)=0\), \(u(a,\theta ,z)=0\), \(u(r,\theta ,H)=0\), \(u_\theta (r,\pi ,z)=f(r,z)\).
\begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } + u_{zz} = 0 \end {align*}
Mathematica ✗
ClearAll["Global`*"]; lap = Laplacian[u[r, theta, z], {r, theta, z}, "Cylindrical"]; bc = {u[r, theta, 0] == 0, u[r, 0, z] == 0, u[a, theta, z] == 0,u[r,theta,H]==0,Derivative[0,1,0][u][r,Pi,z]==f[r,z]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{lap == 0, bc}, u[r, theta, z], {r, theta, z}, Assumptions -> {a > 0, r < a, H > 0,theta>0,theta<Pi}], 60*10]];
Failed
Maple ✗
restart; pde :=VectorCalculus:-Laplacian(u(r,theta,z),'cylindrical'[r,theta,z])=0; bc := u(r,theta,0)=0,u(r,0,z)=0, u(a,theta,z)=0, u(r,theta,H)=0,eval(diff(u(r,theta,z),theta),theta=Pi)=f(r,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta,z)) assuming a>0,r<a,H>0,theta>0,theta<Pi),output='realtime'));
sol=()