Added January 20, 2019.
Problem 2.6.5.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + a \sin ^k(\lambda x) \cos ^n(\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*Sin[lambda*x]^k*Cos[mu*y]^n*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\sqrt {\sin ^2(\mu y)} \csc (\mu y) \cos ^{1-n}(\mu y) \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\cos ^2(\mu y)\right )}{\mu (n-1)}-\frac {a \sqrt {\cos ^2(\lambda x)} \sec (\lambda x) \sin ^{k+1}(\lambda x) \, _2F_1\left (\frac {1}{2},\frac {k+1}{2};\frac {k+3}{2};\sin ^2(\lambda x)\right )}{k \lambda +\lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ a*sin(lambda*x)^k*cos(mu*y)^n*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (-\left (\int \left (\sin ^{k}\left (\lambda x \right )\right )d x \right )+\int \frac {\cos ^{-n}\left (\mu y \right )}{a}d y \right )\] Has unresolved integrals
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2-y \tan x+a(1-a) \cot ^2 x \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 - y*Tan[x] + a*(1 - a)*Cot[x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\left (-\sin ^2(x)\right )^{\frac {1}{2} i \sqrt {a-1} \sqrt {a} \sqrt {\frac {1}{a-a^2}-4}} \left (i \sqrt {a-1} \sqrt {a} \sqrt {\frac {1}{a-a^2}-4} \cos (x)+2 y \sin (x)+\cos (x)\right )}{-i \sqrt {a-1} \sqrt {a} \sqrt {\frac {1}{a-a^2}-4} \cos (x)+2 y \sin (x)+\cos (x)}\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2-y *tan(x)+a*(1-a)*cot(x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {\left (a \cos \left (x \right )+y \sin \left (x \right )\right ) \left (\sin ^{2 a -1}x \right )}{-y \sin \left (x \right )+\left (a -1\right ) \cos \left (x \right )}\right )\]
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2-m y \tan x+b^2 \cos ^{2 m} x \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 - m*y*Tan[x] + b^2*Cos[x]^(2*m))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\sqrt {b^2} \sqrt {\sin ^2(x)} \csc (x) \cos ^{m+1}(x) \, _2F_1\left (\frac {1}{2},\frac {m+1}{2};\frac {m+3}{2};\cos ^2(x)\right )}{m+1}+\tan ^{-1}\left (\frac {y \cos ^{-m}(x)}{\sqrt {b^2}}\right )\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2-m*y*tan(x)+b^2*cos(x)^(2*m) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {3 \left (\hypergeom \left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin ^{2}x \right )+\frac {\left (\cos \left (x \right )-1\right ) \left (\cos \left (x \right )+1\right ) \left (m -1\right ) \hypergeom \left (\left [\frac {3}{2}, -\frac {m}{2}+\frac {3}{2}\right ], \left [\frac {5}{2}\right ], \sin ^{2}x \right )}{3}\right ) b \sqrt {\cos ^{2 m -2}x}\, \left (\cos ^{2}x \right ) \cos \left (b \left (\cos ^{-m +1}x \right ) \sqrt {\cos ^{2 m -2}x}\, \hypergeom \left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin ^{2}x \right ) \sin \left (x \right )\right )+3 y \left (\cos ^{m}x \right ) \sin \left (b \left (\cos ^{-m +1}x \right ) \sqrt {\cos ^{2 m -2}x}\, \hypergeom \left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin ^{2}x \right ) \sin \left (x \right )\right )}{3 \left (\hypergeom \left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin ^{2}x \right )+\frac {\left (\cos \left (x \right )-1\right ) \left (\cos \left (x \right )+1\right ) \left (m -1\right ) \hypergeom \left (\left [\frac {3}{2}, -\frac {m}{2}+\frac {3}{2}\right ], \left [\frac {5}{2}\right ], \sin ^{2}x \right )}{3}\right ) b \sqrt {\cos ^{2 m -2}x}\, \left (\cos ^{2}x \right ) \sin \left (b \left (\cos ^{-m +1}x \right ) \sqrt {\cos ^{2 m -2}x}\, \hypergeom \left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin ^{2}x \right ) \sin \left (x \right )\right )-3 y \left (\cos ^{m}x \right ) \cos \left (b \left (\cos ^{-m +1}x \right ) \sqrt {\cos ^{2 m -2}x}\, \hypergeom \left (\left [\frac {1}{2}, -\frac {m}{2}+\frac {1}{2}\right ], \left [\frac {3}{2}\right ], \sin ^{2}x \right ) \sin \left (x \right )\right )}\right )\] Mathematica answer is simpler
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2+m y \cot x+b^2 \sin ^m x \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + m*y*Cot[x] + b^2*Sin[x]^m)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ (y^2+m*y*cot(x)+b^2*sin(x)^m )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2-2 \lambda ^2 \tan ^2(\lambda x)-2 \lambda ^2 \cot ^2(\lambda x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 - 2*lambda^2*Tan[lambda*x]^2 - 2*lambda^2*Cot[lambda*x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2-2*lambda^2*tan(lambda*x)^2-2*lambda^2*cot(lambda*x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {4 \sqrt {2 \cos \left (2 \lambda x \right )-2}\, \left (-2 \lambda \cos \left (2 \lambda x \right )+y \sin \left (2 \lambda x \right )\right )}{8 \sqrt {2 \cos \left (2 \lambda x \right )-2}\, \lambda \cos \left (2 \lambda x \right ) \ln \left (\cos \left (\lambda x \right )+\sqrt {\cos ^{2}\left (\lambda x \right )-1}\right )-4 \sqrt {2 \cos \left (2 \lambda x \right )-2}\, y \ln \left (\cos \left (\lambda x \right )+\frac {\sqrt {2 \cos \left (2 \lambda x \right )-2}}{2}\right ) \sin \left (2 \lambda x \right )+\left (\sin \left (3 \lambda x \right )+\sin \left (5 \lambda x \right )\right ) y \cos \left (2 \lambda x \right )-y \sin \left (3 \lambda x \right )-y \sin \left (5 \lambda x \right )+7 \left (\cos \left (\lambda x \right )-\cos \left (3 \lambda x \right )-\frac {\cos \left (5 \lambda x \right )}{7}+\frac {\cos \left (7 \lambda x \right )}{7}\right ) \lambda }\right )\]
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( y^2+\lambda (a+b)+2 a b+a(\lambda -a) \tan ^2(\lambda x)+ b(\lambda -b) \cot ^2(\lambda x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda*(a + b) + 2*a*b + a*(lambda - a)*Tan[lambda*x]^2 + b*(lambda - b)*Cot[lambda*x]^2)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ ( y^2+lambda*(a+b)+2*a*b+a*(lambda -a)*tan(lambda*x)^2+ b*(lambda -b)*cot(lambda*x)^2)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {2 \left (a \left (\sin ^{2}\left (\lambda x \right )\right )-b \left (\cos ^{2}\left (\lambda x \right )\right )-y \cos \left (\lambda x \right ) \sin \left (\lambda x \right )\right ) \left (a -\frac {3 \lambda }{2}\right ) \left (\cos ^{\frac {a}{\lambda }}\left (\lambda x \right )\right ) \left (\cos ^{\frac {a -\lambda }{\lambda }}\left (\lambda x \right )\right ) \left (\sin ^{\frac {b}{\lambda }}\left (\lambda x \right )\right ) \left (\sin ^{\frac {b -\lambda }{\lambda }}\left (\lambda x \right )\right )}{-4 \left (a +b -\lambda \right ) \lambda \hypergeom \left (\left [2, \frac {-a -b +2 \lambda }{\lambda }\right ], \left [-\frac {2 a -5 \lambda }{2 \lambda }\right ], \cos ^{2}\left (\lambda x \right )\right ) \left (\cos ^{2}\left (\lambda x \right )\right ) \left (\sin ^{2}\left (\lambda x \right )\right )+2 \left (y \cos \left (\lambda x \right ) \sin \left (\lambda x \right )+\left (-b +\lambda \right ) \left (\cos ^{2}\left (\lambda x \right )\right )+\left (a -\lambda \right ) \left (\sin ^{2}\left (\lambda x \right )\right )\right ) \left (a -\frac {3 \lambda }{2}\right ) \hypergeom \left (\left [1, \frac {-a -b +\lambda }{\lambda }\right ], \left [-\frac {2 a -3 \lambda }{2 \lambda }\right ], \cos ^{2}\left (\lambda x \right )\right )}\right )\]
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda \sin (\lambda x) y^2 + a \cos ^n(\lambda x) y-a \cos ^{n-1}(\lambda x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*Sin[lambda*x]*y^2 + a*Cos[lambda*x]^n*y - a*Cos[lambda*x]^(n - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+ (lambda*sin(lambda*x)* y^2 + a*cos(lambda*x)^n*y-a*cos(lambda*x)^(n-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda \sin (\lambda x) y^2 + a \sin (\lambda x) y-a \tan (\lambda x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*Sin[lambda*x]*y^2 + a*Sin[lambda*x]*y - a*Tan[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (lambda*sin(lambda*x)*y^2 + a*sin(lambda*x)*y-a*tan(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (-\frac {\left (y \cos \left (\lambda x \right )-1\right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }}}{\left (y \cos \left (\lambda x \right )-1\right ) a \Ei \left (1, \frac {a \cos \left (\lambda x \right )}{\lambda }\right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }}-\lambda y}\right )\]
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( \lambda \sin (\lambda x) y^2 + a \sin (\lambda x) y-a \tan (\lambda x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*Sin[lambda*x]*y^2 + a*Sin[lambda*x]*y - a*Tan[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (lambda*sin(lambda*x)*y^2 + a*sin(lambda*x)*y-a*tan(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (-\frac {\left (y \cos \left (\lambda x \right )-1\right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }}}{\left (y \cos \left (\lambda x \right )-1\right ) a \Ei \left (1, \frac {a \cos \left (\lambda x \right )}{\lambda }\right ) {\mathrm e}^{\frac {a \cos \left (\lambda x \right )}{\lambda }}-\lambda y}\right )\]
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( A e^{\lambda x} \cos (a y) + B e^{\mu x} \sin (a y) + A e^{\lambda x} \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (A*Exp[lambda*x]*Cos[a*y] + B*Exp[mu*x]*Sin[a*y] + A*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (A*exp(lambda*x)*cos(a*y) + B*exp(mu*x)*sin(a*y) + A*exp(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {\left (\cos \left (a y \right )+1\right ) A a \left (\int {\mathrm e}^{\frac {-B a \,{\mathrm e}^{\mu x}+\lambda \mu x}{\mu }}d x \right )-{\mathrm e}^{-\frac {B a \,{\mathrm e}^{\mu x}}{\mu }} \sin \left (a y \right )}{2 \left (-\lambda +\mu \right ) a \cos \left (\frac {a y}{2}\right )^{2}}\right )\]
____________________________________________________________________________________
Added January 20, 2019.
Problem 2.6.5.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ \sin ^{n+1}(2 x) w_x + \left ( a y^2 \sin ^{2 n}x + b \cos ^{2 n} x \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = Sin[2*x]^(n + 1)*D[w[x, y], x] + (a*y^2*Sin[x]^(2*n) + b*Cos[x]^(2*n))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted
Maple ✓
restart; pde := sin(2*x)^(n+1)*diff(w(x,y),x)+ (a*y^2*sin(x)^(2*n) + b*cos(x)^(2*n) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {-\left (\left (-3 \cos \left (3 x \right )+\cos \left (5 x \right )\right ) \left (\cos ^{\sqrt {-a b 4^{-n}+n^{2}}}x \right )+2 \left (\cos ^{\sqrt {-a b 4^{-n}+n^{2}}+1}x \right )\right ) a y \left (\sin ^{2 n -\sqrt {-a b 4^{-n}+n^{2}}}x \right )-2 \left (-n +\sqrt {-a b 4^{-n}+n^{2}}\right ) \left (\left (\sin ^{n}\left (2 x \right )\right ) \sin \left (4 x \right )-2 \left (\sin ^{n +1}\left (2 x \right )\right )\right ) \left (\cos ^{\sqrt {-a b 4^{-n}+n^{2}}}x \right ) \left (\sin ^{-\sqrt {-a b 4^{-n}+n^{2}}+1}x \right )}{-2 n \left (\sin ^{n}\left (2 x \right )\right ) \sin \left (x \right ) \sin \left (4 x \right )+\left (2 \cos \left (x \right )-3 \cos \left (3 x \right )+\cos \left (5 x \right )\right ) a y \left (\sin ^{2 n}x \right )+4 n \left (\sin ^{n +1}\left (2 x \right )\right ) \sin \left (x \right )-2 \left (\left (\sin ^{n}\left (2 x \right )\right ) \sin \left (4 x \right )-2 \left (\sin ^{n +1}\left (2 x \right )\right )\right ) \sqrt {-a b 4^{-n}+n^{2}}\, \sin \left (x \right )}\right )\]
____________________________________________________________________________________