6.2.24 8.1

6.2.24.1 [751] problem number 1
6.2.24.2 [752] problem number 2
6.2.24.3 [753] problem number 3
6.2.24.4 [754] problem number 4
6.2.24.5 [755] problem number 5
6.2.24.6 [756] problem number 6
6.2.24.7 [757] problem number 7
6.2.24.8 [758] problem number 8
6.2.24.9 [759] problem number 9
6.2.24.10 [760] problem number 10
6.2.24.11 [761] problem number 11
6.2.24.12 [762] problem number 12
6.2.24.13 [763] problem number 13

6.2.24.1 [751] problem number 1

problem number 751

Added Feb. 4, 2019.

Problem 2.8.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\) \[ w_x + \left ( f(x) y+g(x) \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde = D[w[x, y], x] + (f[x]*y + g[x])*D[w[x, y], y] == 0; 
sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (y \exp \left (-\int _1^xf(K[1])dK[1]\right )-\int _1^x\exp \left (-\int _1^{K[2]}f(K[1])dK[1]\right ) g(K[2])dK[2]\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+( f(x)*y+g(x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (y \,{\mathrm e}^{-\left (\int f \left (x \right )d x \right )}-\left (\int {\mathrm e}^{-\left (\int f \left (x \right )d x \right )} g \left (x \right )d x \right )\right )\]

____________________________________________________________________________________

6.2.24.2 [752] problem number 2

problem number 752

Added Feb. 4, 2019.

Problem 2.8.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y+g(x) y^k \right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y + g[x]*y^k)*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left ((k-1) \int _1^x\exp \left ((k-1) \int _1^{K[2]}f(K[1])dK[1]\right ) g(K[2])dK[2]+y^{1-k} \exp \left ((k-1) \int _1^xf(K[1])dK[1]\right )\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+( f(x)*y+g(x)*y^k )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (y^{-k +1} {\mathrm e}^{\left (k -1\right ) \left (\int f \left (x \right )d x \right )}+\left (k -1\right ) \left (\int {\mathrm e}^{\left (k -1\right ) \left (\int f \left (x \right )d x \right )} g \left (x \right )d x \right )\right )\]

____________________________________________________________________________________

6.2.24.3 [753] problem number 3

problem number 753

Added Feb. 4, 2019.

Problem 2.8.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+f(x) y -a^2 -a f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + f[x]*y - a^2 - a*f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( y^2+f(x)*y -a^2 -a*f(x) )*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {\left (a -y \right ) \left (\int {\mathrm e}^{2 a x +\int f \left (x \right )d x}d x \right )-{\mathrm e}^{2 a x +\int f \left (x \right )d x}}{a -y}\right )\]

____________________________________________________________________________________

6.2.24.4 [754] problem number 4

problem number 754

Added Feb. 4, 2019.

Problem 2.8.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( y^2+x f(x) y + f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (y^2 + x*f[x]*y + f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\exp \left (-\int _1^x-f(K[5]) K[5]dK[5]\right )}{x^2 y+x}-\int _1^x\frac {\exp \left (-\int _1^{K[6]}-f(K[5]) K[5]dK[5]\right )}{K[6]^2}dK[6]\right )\right \}\right \}\]

Maple

restart; 
pde :=  diff(w(x,y),x)+( y^2+x*f(x)*y + f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {x y \left (\int {\mathrm e}^{\int \frac {x^{2} f \left (x \right )-2}{x}d x}d x \right )+x \,{\mathrm e}^{\int \frac {x^{2} f \left (x \right )-2}{x}d x}+\int {\mathrm e}^{\int \frac {x^{2} f \left (x \right )-2}{x}d x}d x}{x y +1}\right )\]

____________________________________________________________________________________

6.2.24.5 [755] problem number 5

problem number 755

Added Feb. 4, 2019.

Problem 2.8.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x - \left ( (k+1)x^k y^2-x^{k+1} f(x) y+f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] - ((k + 1)*x^k*y^2 - x^(k + 1)*f[x]*y + f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)-( (k+1)*x^k*y^2-x^(k+1)*f(x)*y+f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {-x^{k +1} {\mathrm e}^{\int \frac {x x^{k +1} f \left (x \right )-2 k -2}{x}d x}+\left (y x^{k +1}-1\right ) \left (k +1\right ) \left (\int \frac {x^{-k} {\mathrm e}^{\int x^{k +1} f \left (x \right )d x}}{x^{2}}d x \right )}{y x^{k +1}-1}\right )\]

____________________________________________________________________________________

6.2.24.6 [756] problem number 6

problem number 756

Added Feb. 4, 2019.

Problem 2.8.1.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+a y-a b- b^2 f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 + a*y - a*b - b^2*f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( f(x)*y^2+a*y-a*b- b^2*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {\left (b -y \right ) \left (\int {\mathrm e}^{a x +2 b \left (\int f \left (x \right )d x \right )} f \left (x \right )d x \right )-{\mathrm e}^{a x +2 b \left (\int f \left (x \right )d x \right )}}{b -y}\right )\]

____________________________________________________________________________________

6.2.24.7 [757] problem number 7

problem number 757

Added Feb. 4, 2019.

Problem 2.8.1.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f[x] y^2-a x^n f[x] y+a n x^{n-1}\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 - a*x^n*f[x]*y + a*n*x^(n - 1))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( f(x)*y^2-a*x^n*f(x)*y+a*n*x^(n-1))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.24.8 [758] problem number 8

problem number 758

Added Feb. 4, 2019.

Problem 2.8.1.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+a n x^{n-1}-a^2 x^{2 n} f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 + a*n*x^(n - 1) - a^2*x^(2*n)*f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(  f(x)*y^2+a*n*x^(n-1)-a^2*x^(2*n)*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.24.9 [759] problem number 9

problem number 759

Added Feb. 4, 2019.

Problem 2.8.1.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+g(x) y-a^2 f(x)-a g(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 + g[x]*y - a^2*f[x] - a*g[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(  f(x)*y^2+g(x)* y-a^2*f(x)-a*g(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (\frac {\left (a -y \right ) \left (\int {\mathrm e}^{2 a \left (\int f \left (x \right )d x \right )+\int g \left (x \right )d x} f \left (x \right )d x \right )-{\mathrm e}^{2 a \left (\int f \left (x \right )d x \right )+\int g \left (x \right )d x}}{a -y}\right )\]

____________________________________________________________________________________

6.2.24.10 [760] problem number 10

problem number 760

Added Feb. 4, 2019.

Problem 2.8.1.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2+g(x) y+a n x^{n-1} - a x^n g(x)-a^2 x^{2 n} f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 + g[x]*y + a*n*x^(n - 1) - a*x^n*g[x] - a^2*x^(2*n)*f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+(  f(x)*y^2+g(x)*y+a*n*x^(n-1) - a*x^n*g(x)-a^2*x^(2*n)*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.24.11 [761] problem number 11

problem number 761

Added Feb. 4, 2019.

Problem 2.8.1.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ w_x + \left ( f(x) y^2-a x^n g(x) y+a n x^{n-1}+a^2 x^{2 n}(g(x)-f(x))\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y], x] + (f[x]*y^2 - a*x^n*g*x*y + a*n*x^(n - 1) + a^2*x^(2*n)*(g*x - f*x))*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

Failed

Maple

restart; 
pde :=  diff(w(x,y),x)+( f(x)*y^2-a*x^n*g(x)*y+a*n*x^(n-1)+a^2*x^(2*n)*(g(x)-f(x)))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

sol=()

____________________________________________________________________________________

6.2.24.12 [762] problem number 12

problem number 762

Added Feb. 4, 2019.

Problem 2.8.1.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( f(x) y^2+n y+a x^{2 n} f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + (f[x]*y^2 + n*y + a*x^(2*n)*f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-n}}{\sqrt {a}}\right )-\sqrt {a} \int _1^xf(K[1]) K[1]^{n-1}dK[1]\right )\right \}\right \}\]

Maple

restart; 
pde :=  x*diff(w(x,y),x)+( f(x)*y^2+n*y+a*x^(2*n)*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (\sqrt {a}\, \left (\int x^{n -1} f \left (x \right )d x \right )-\arctan \left (\frac {y x^{-n}}{\sqrt {a}}\right )\right )\]

____________________________________________________________________________________

6.2.24.13 [763] problem number 13

problem number 763

Added Feb. 4, 2019.

Problem 2.8.1.13 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ x w_x + \left ( x^{2 n} f(x) y^2+(a x^n f(x)-n) y+b f(x)\right ) w_y = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  x*D[w[x, y], x] + (x^(2*n)*f[x]*y^2 + (a*x^n*f[x] - n)*y + b*f[x])*D[w[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (-\int _1^x\frac {b f(K[5]) \sqrt {\frac {K[5]^{2 n}}{b}}}{K[5]}dK[5]-\frac {2 \sqrt {b} \tan ^{-1}\left (\frac {\sqrt {b} \left (\sqrt {\frac {a^2}{b}}-2 y \sqrt {\frac {x^{2 n}}{b}}\right )}{\sqrt {4 b-a^2}}\right )}{\sqrt {4 b-a^2}}\right )\right \}\right \}\]

Maple

restart; 
pde := x* diff(w(x,y),x)+( x^(2*n)* f(x)*y^2+(a*x^n*f(x)-n)*y+b*f(x))*diff(w(x,y),y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[w \left (x , y\right ) = \mathit {\_F1} \left (-\frac {2 \left (a \arctanh \left (\frac {\left (2 y x^{n}+a \right ) a}{\sqrt {\left (a^{2}-4 b \right ) a^{2}}}\right )+\frac {\sqrt {\left (a^{2}-4 b \right ) a^{2}}\, \left (\int \frac {x^{n} f \left (x \right )}{x}d x \right )}{2}\right ) a}{\sqrt {\left (a^{2}-4 b \right ) a^{2}}}\right )\]

____________________________________________________________________________________