Added Feb. 9, 2019.
Problem Chapter 3.2.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c x^2+d y^2+ k x y+n \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*x^2 + d*y^2 + k*x*y + n; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {x \left (a^2 \left (2 c x^2+6 d y^2+3 k x y+6 n\right )-a b x (6 d y+k x)+2 b^2 d x^2\right )}{6 a^3}+c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a* diff(w(x,y),x)+b*diff(w(x,y),y) = c*x^2+d*y^2+k*x*y+n; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {6 a^{3} \mathit {\_F1} \left (\frac {a y -b x}{a}\right )+2 \left (b^{2} d x^{2}-3 \left (d y +\frac {k x}{6}\right ) a b x +\left (c x^{2}+3 d y^{2}+\frac {3}{2} k x y +3 n \right ) a^{2}\right ) x}{6 a^{3}}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a x w_x + b y w_y = c x^2+d y^2+ k x y+n \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == c*x^2 + d*y^2 + k*x*y + n; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {2 a b (a+b) c_1\left (y x^{-\frac {b}{a}}\right )+a^2 d y^2+a b c x^2+a b d y^2+2 a b k x y+2 b n (a+b) \log (x)+b^2 c x^2}{2 a b (a+b)}\right \}\right \}\]
Maple ✓
restart; pde := a*x*diff(w(x,y),x)+b*y*diff(w(x,y),y) = c*x^2+d*y^2+k*x*y+n; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {k x y}{a +b}+\frac {c x^{2}}{2 a}+\frac {d y^{2}}{2 b}+\frac {n \ln \left (x \right )}{a}+\mathit {\_F1} \left (y x^{-\frac {b}{a}}\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a y w_x + b x w_y = c x y+d \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*y*D[w[x, y], x] + b*x*D[w[x, y], y] == c*x*y + d; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\begin {align*} & \left \{w(x,y)\to c_1\left (\frac {a y^2-b x^2}{2 a}\right )-\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a y^2}}\right )}{\sqrt {a} \sqrt {b}}+\frac {c x^2}{2 a}\right \}\\& \left \{w(x,y)\to c_1\left (\frac {a y^2-b x^2}{2 a}\right )+\frac {d \tanh ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a y^2}}\right )}{\sqrt {a} \sqrt {b}}+\frac {c x^2}{2 a}\right \}\\ \end {align*}
Maple ✓
restart; pde := a*y*diff(w(x,y),x)+b*x*diff(w(x,y),y) = c*x*y+d; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {a d \ln \left (\frac {a b x}{\sqrt {a b}}+\sqrt {a^{2} y^{2}}\right )+\frac {\sqrt {a b}\, c x^{2}}{2}+\sqrt {a b}\, a \mathit {\_F1} \left (\frac {a y^{2}-b x^{2}}{a}\right )}{\sqrt {a b}\, a}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a x^2 w_x + b y^2 w_y = c x^2+d y^2+ k x y+ n x+ m y+s \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y], x] + b*y^2*D[w[x, y], y] == c*x^2 + d*y^2 + k*x*y + n*x + m*y + s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {a b x (a x-b y) c_1\left (\frac {b}{a x}-\frac {1}{y}\right )-a^2 m x^2 \log \left (\frac {a x}{y}\right )+a b c x^3-a b d x y^2+a b k x^2 y \log \left (\frac {a x}{y}\right )+x \log (x) (a m+b n) (a x-b y)+a b m x y \log \left (\frac {a x}{y}\right )-a b s x-b^2 c x^2 y+b^2 s y}{a b x (a x-b y)}\right \}\right \}\]
Maple ✓
restart; pde := a*x^2*diff(w(x,y),x)+b*y^2*diff(w(x,y),y) =c*x^2+d*y^2+ k*x*y+ n*x+ m*y+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {k x y \ln \left (\frac {a x}{y}\right )}{a x -b y}-\frac {d y^{2}}{a x -b y}+\frac {c x}{a}+\frac {n \ln \left (x \right )}{a}+\frac {m \ln \left (x \right )}{b}-\frac {m \ln \left (\frac {a x}{y}\right )}{b}+\mathit {\_F1} \left (\frac {a x -b y}{a x y}\right )-\frac {s}{a x}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x^2 w_x + a x y w_y = b y^2 \]
Mathematica ✓
ClearAll["Global`*"]; pde = x^2*D[w[x, y], x] + a*x*y*D[w[x, y], y] == b*y^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to -\frac {b y^2}{x-2 a x}+c_1\left (y x^{-a}\right )\right \}\right \}\]
Maple ✓
restart; pde := x^2*diff(w(x,y),x)+a*x*y*diff(w(x,y),y) =b*y^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {b y^{2}}{\left (2 a -1\right ) x}+\mathit {\_F1} \left (y x^{-a}\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a y^2 w_x + b x^2 w_y = c x^2+d \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*y^2*D[w[x, y], x] + b*x^2*D[w[x, y], y] == c*x^2 + d; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\begin {align*} & \left \{w(x,y)\to \frac {b d x \left (\frac {a y^3}{a y^3-b x^3}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {b x^3}{b x^3-a y^3}\right )+a c y^3}{\sqrt [3]{a} b \left (a y^3\right )^{2/3}}+c_1\left (\frac {a y^3-b x^3}{3 a}\right )\right \}\\& \left \{w(x,y)\to -\frac {\sqrt [3]{-1} \left (b d x \left (\frac {a y^3}{a y^3-b x^3}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {b x^3}{b x^3-a y^3}\right )+a c y^3\right )}{\sqrt [3]{a} b \left (a y^3\right )^{2/3}}+c_1\left (\frac {a y^3-b x^3}{3 a}\right )\right \}\\& \left \{w(x,y)\to \frac {(-1)^{2/3} \left (b d x \left (\frac {a y^3}{a y^3-b x^3}\right )^{2/3} \, _2F_1\left (\frac {1}{3},\frac {2}{3};\frac {4}{3};\frac {b x^3}{b x^3-a y^3}\right )+a c y^3\right )}{\sqrt [3]{a} b \left (a y^3\right )^{2/3}}+c_1\left (\frac {a y^3-b x^3}{3 a}\right )\right \}\\ \end {align*}
Maple ✓
restart; pde := a*y^2*diff(w(x,y),x)+b*x^2*diff(w(x,y),y) =c*x^2+d; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {\left (\mathit {\_a}^{2} c +d \right ) a}{\left (\left (\mathit {\_a}^{3} b +a \RootOf \left (a y -\left (a^{2} b x^{3}+a^{3} \mathit {\_Z} \right )^{\frac {1}{3}}\right )\right ) a^{2}\right )^{\frac {2}{3}}}d\mathit {\_a} +\mathit {\_F1} \left (\RootOf \left (a y -\left (a^{2} b x^{3}+a^{3} \mathit {\_Z} \right )^{\frac {1}{3}}\right )\right )\] Contains unresolved integral with RootOf
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a y^2 w_x + b x y w_y = c x^2+d y^2 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*y^2*D[w[x, y], x] + b*x*y*D[w[x, y], y] == c*x^2 + d*y^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {a y^2-b x^2}{2 a}\right )-\frac {\sqrt {a} c \sqrt {y^2-\frac {b x^2}{a}} \tan ^{-1}\left (\frac {\sqrt {b} x}{\sqrt {a} \sqrt {y^2-\frac {b x^2}{a}}}\right )}{b^{3/2}}+\frac {d x}{a}+\frac {c x}{b}\right \}\right \}\]
Maple ✓
restart; pde := a*y^2*diff(w(x,y),x)+b*x*y*diff(w(x,y),y) =c*x^2+d*y^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {-\left (a y^{2}-b x^{2}\right ) a c \arctan \left (\frac {b x}{\sqrt {\left (a y^{2}-b x^{2}\right ) b}}\right )+\sqrt {\left (a y^{2}-b x^{2}\right ) b}\, \left (a b \mathit {\_F1} \left (\frac {a y^{2}-b x^{2}}{a}\right )+\left (a c +b d \right ) x \right )}{\sqrt {\left (a y^{2}-b x^{2}\right ) b}\, a b}\]
____________________________________________________________________________________