Added Feb. 9, 2019.
Problem Chapter 3.2.4.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x +b w_y = c x^n + d y^m \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*x^n + d*y^m; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )+\frac {c x^{n+1}}{a n+a}+\frac {d y^{m+1}}{b m+b}\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x) + b*diff(w(x,y),y) =c*x^n+d*y^m; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {\left (m +1\right ) \left (n +1\right ) a b \mathit {\_F1} \left (\frac {a y -b x}{a}\right )+\left (n +1\right ) a d y^{m +1}+\left (m +1\right ) b c x^{n +1}}{\left (m +1\right ) \left (n +1\right ) a b}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x +b w_y = c x^n y \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*x^n*y; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {-c x^{n+1} (b x-a (n+2) y)+a^2 \left (n^2+3 n+2\right ) c_1\left (y-\frac {b x}{a}\right )}{a^2 (n+1) (n+2)}\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x) + b*diff(w(x,y),y) =c*x^n*y; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {\left (n +2\right ) \left (n +1\right ) a^{2} \mathit {\_F1} \left (\frac {a y -b x}{a}\right )+\left (\left (n +2\right ) a y -b x \right ) c x^{n +1}}{\left (n +2\right ) \left (n +1\right ) a^{2}}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x w_x +y w_y = a(x^2+y^2)^k \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + y*D[w[x, y], y] == a*(x^2 + y^2)^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {a \left (x^2+y^2\right )^k}{2 k}+c_1\left (\frac {y}{x}\right )\right \}\right \}\]
Maple ✓
restart; pde :=x*diff(w(x,y),x) + y*diff(w(x,y),y) =a*(x^2+y^2)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {a \left (x^{2}+y^{2}\right )^{k}+2 k \mathit {\_F1} \left (\frac {y}{x}\right )}{2 k}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a x w_x +b y w_y = c x^n y^m \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == c*x^n*y^m; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {c y^m x^n}{a n+b m}+c_1\left (y x^{-\frac {b}{a}}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*x*diff(w(x,y),x) + b*y*diff(w(x,y),y) =c*x^n*y^m; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {c x^{n} y^{m}}{a n +b m}+\mathit {\_F1} \left (y x^{-\frac {b}{a}}\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a x w_x +b y w_y = c x^n + d y^m \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y], x] + b*y*D[w[x, y], y] == c*x^n + d*y^m; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y x^{-\frac {b}{a}}\right )+\frac {c x^n}{a n}+\frac {d y^m}{b m}\right \}\right \}\]
Maple ✓
restart; pde :=a*x*diff(w(x,y),x) + b*y*diff(w(x,y),y) =c*x^n + d*y^m; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {c \mathit {\_a}^{n}+d \left (y \mathit {\_a}^{\frac {b}{a}} x^{-\frac {b}{a}}\right )^{m}}{\mathit {\_a} a}d\mathit {\_a} +\mathit {\_F1} \left (y x^{-\frac {b}{a}}\right )\] Result has unresolved integral
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ m x w_x +n y w_y = (a x^n+ b y^m)^k \]
Mathematica ✓
ClearAll["Global`*"]; pde = m*x*D[w[x, y], x] + n*y*D[w[x, y], y] == (a*x^n + b*y^m)^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {\left (a x^n+b y^m\right )^k}{k m n}+c_1\left (y x^{-\frac {n}{m}}\right )\right \}\right \}\]
Maple ✓
restart; pde :=m*x*diff(w(x,y),x) + n*y*diff(w(x,y),y) =(a*x^n+b*y^m)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {k m n \mathit {\_F1} \left (y x^{-\frac {n}{m}}\right )+\left (a x^{n}+b y^{m}\right )^{k}}{k m n}\] Result has unresolved integral
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a x^n w_x +b y^m w_y = c x^k+ d y^s \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^n*D[w[x, y], x] + b*y^m*D[w[x, y], y] == c*x^k + d*y^s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {b x^{1-n}}{a (n-1)}-\frac {y^{1-m}}{m-1}\right )+\frac {c x^{k-n+1}}{a k-a n+a}-\frac {d y^{1-m} \left (\left (y^{m-1}\right )^{\frac {1}{m-1}}\right )^s}{b (m-s-1)}\right \}\right \}\]
Maple ✓
restart; pde :=a*x^n*diff(w(x,y),x) + n*y^m*diff(w(x,y),y) =c*x^k+d*y^s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = -\frac {\left (k -n +1\right ) a^{2} d a^{\frac {s}{m -1}-1} y^{-m +1} \left (\left (n -1\right ) a y^{-m +1}\right )^{-\frac {s}{m -1}} \left (n -1\right )^{\frac {s}{m -1}} {\mathrm e}^{-\frac {i \pi \left (\mathrm {csgn}\left (\frac {i}{n -1}\right ) \mathrm {csgn}\left (i a y^{-m +1}\right )^{2}-\mathrm {csgn}\left (i a y^{-m +1}\right )^{3}-\left (-\mathrm {csgn}\left (\frac {i}{a}\right )+\mathrm {csgn}\left (i y^{-m +1}\right )\right ) \mathrm {csgn}\left (i y^{-m +1}\right )^{2}+\left (-\mathrm {csgn}\left (\frac {i}{a}\right )+\mathrm {csgn}\left (i y^{-m +1}\right )\right ) \mathrm {csgn}\left (i y^{-m +1}\right ) \mathrm {csgn}\left (i a y^{-m +1}\right )+\left (-\mathrm {csgn}\left (\frac {i}{n -1}\right )+\mathrm {csgn}\left (i a y^{-m +1}\right )\right ) \mathrm {csgn}\left (i a y^{-m +1}\right ) \mathrm {csgn}\left (i \left (n -1\right ) a y^{-m +1}\right )\right ) s}{2 m -2}}-\left (\left (k -n +1\right ) a \mathit {\_F1} \left (\frac {\left (n -1\right ) a y^{-m +1}-\left (m -1\right ) n x^{-n +1}}{\left (n -1\right ) a}\right )+c x^{k -n +1}\right ) \left (m -s -1\right ) n}{\left (k -n +1\right ) \left (m -s -1\right ) a n}\] Result has unresolved integral
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a x^n w_x +b x^m y w_y = c x^k y^s + d \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^n*D[w[x, y], x] + b*x^m*y*D[w[x, y], y] == c*x^k*y^s + d; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to x^{1-n} \left (\frac {d}{a-a n}-\frac {c x^k y^s e^{-\frac {b s x^{m-n+1}}{a m-a n+a}} \left (-\frac {b s x^{m-n+1}}{a m-a n+a}\right )^{\frac {-k+n-1}{m-n+1}} \operatorname {Gamma}\left (\frac {k-n+1}{m-n+1},-\frac {b s x^{m-n+1}}{a m-a n+a}\right )}{a (m-n+1)}\right )+c_1\left (y e^{-\frac {b x^{m-n+1}}{a m-a n+a}}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*x^n*diff(w(x,y),x) + n*x^m*y*diff(w(x,y),y) =c*x^k*y^s+d; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {c \mathit {\_a}^{k -n} \left (y \,{\mathrm e}^{-\frac {\left (-\mathit {\_a}^{m -n +1}+x^{m -n +1}\right ) n}{\left (m -n +1\right ) a}}\right )^{s}+d \mathit {\_a}^{-n}}{a}d\mathit {\_a} +\mathit {\_F1} \left (y \,{\mathrm e}^{-\frac {n x^{m -n +1}}{\left (m -n +1\right ) a}}\right )\] Result has unresolved integral
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a x^n w_x +(b x^m y + c x^k) w_y = s x^p y^q + d \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^n*D[w[x, y], x] + (b*x^m*y + c*x^k)*D[w[x, y], y] == s*x^p*y^q + d; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \int _1^x\frac {K[1]^{-n} \left (s \left (b^{-\frac {k+1}{m-n+1}} \exp \left (-\frac {b \left (x^{m-n+1}-K[1]^{m-n+1}\right )}{a (m-n+1)}\right ) (a (m-n+1))^{-\frac {m}{m-n+1}} \left (b^{\frac {n}{m-n+1}} c e^{\frac {b x^{m-n+1}}{m a-n a+a}} \operatorname {Gamma}\left (\frac {k-n+1}{m-n+1},\frac {b x^{m-n+1}}{m a-n a+a}\right ) (a (m-n+1))^{\frac {k}{m-n+1}}-b^{\frac {n}{m-n+1}} c e^{\frac {b x^{m-n+1}}{m a-n a+a}} \operatorname {Gamma}\left (\frac {k-n+1}{m-n+1},\frac {b K[1]^{m-n+1}}{m a-n a+a}\right ) (a (m-n+1))^{\frac {k}{m-n+1}}+b^{\frac {k+1}{m-n+1}} y (a (m-n+1))^{\frac {m}{m-n+1}}\right )\right )^q K[1]^p+d\right )}{a}dK[1]+c_1\left (c (a (m-n+1))^{\frac {k-m}{m-n+1}} b^{\frac {-k+n-1}{m-n+1}} \operatorname {Gamma}\left (\frac {k-n+1}{m-n+1},\frac {b x^{m-n+1}}{a m-a n+a}\right )+y e^{-\frac {b x^{m-n+1}}{a m-a n+a}}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*x^n*diff(w(x,y),x) + n*x^m*y*diff(w(x,y),y) =s*x^p*y^q+d; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {s \mathit {\_a}^{-n +p} \left (y \,{\mathrm e}^{-\frac {\left (-\mathit {\_a}^{m -n +1}+x^{m -n +1}\right ) n}{\left (m -n +1\right ) a}}\right )^{q}+d \mathit {\_a}^{-n}}{a}d\mathit {\_a} +\mathit {\_F1} \left (y \,{\mathrm e}^{-\frac {n x^{m -n +1}}{\left (m -n +1\right ) a}}\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a x^n w_x +(b x^m y^k + c x^r y) w_y = s x^p y^q + d \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*x^n*D[w[x, y], x] + (b*x^m*y^k + c*x^r*y)*D[w[x, y], y] == s*x^p*y^q + d; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde :=a*x^n*diff(w(x,y),x) +(b*x^m*y^k + c*x^r*y)*diff(w(x,y),y) =s*x^p*y^q+d; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {s \mathit {\_a}^{-n +p} \left (\left (\frac {\left (-\left (n -r -1\right ) \left (m -2 n +r +2\right )^{2} a b \mathit {\_a}^{m -r} y^{\frac {1}{n -r -1}} y^{\frac {r}{n -r -1}} y^{\frac {k n}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {-m +n -1}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {m -n +1}{n -r -1}} \left (\frac {\left (k -1\right ) c \mathit {\_a}^{-n +r +1}}{\left (n -r -1\right ) a}\right )^{\frac {m -2 n +r +2}{2 n -2 r -2}} \WhittakerM \left (\frac {-m +2 n -r -2}{2 n -2 r -2}, \frac {-m +3 n -2 r -3}{2 n -2 r -2}, \frac {\left (k -1\right ) c \mathit {\_a}^{-n +r +1}}{\left (n -r -1\right ) a}\right ) {\mathrm e}^{\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}} {\mathrm e}^{-\frac {\left (k -1\right ) c \mathit {\_a}^{-n +r +1}}{2 \left (n -r -1\right ) a}}+\left (-\left (k -1\right ) c \mathit {\_a}^{-n +r +1}+\left (m -2 n +r +2\right ) a \right ) \left (n -r -1\right )^{2} b \mathit {\_a}^{m -r} y^{\frac {1}{n -r -1}} y^{\frac {r}{n -r -1}} y^{\frac {k n}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {-m +n -1}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {m -n +1}{n -r -1}} \left (\frac {\left (k -1\right ) c \mathit {\_a}^{-n +r +1}}{\left (n -r -1\right ) a}\right )^{\frac {m -2 n +r +2}{2 n -2 r -2}} \WhittakerM \left (\frac {-m +r}{2 n -2 r -2}, \frac {-m +3 n -2 r -3}{2 n -2 r -2}, \frac {\left (k -1\right ) c \mathit {\_a}^{-n +r +1}}{\left (n -r -1\right ) a}\right ) {\mathrm e}^{\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}} {\mathrm e}^{-\frac {\left (k -1\right ) c \mathit {\_a}^{-n +r +1}}{2 \left (n -r -1\right ) a}}+\left (m -n +1\right ) \left (m -3 n +2 r +3\right ) \left (m -2 n +r +2\right ) \left (\left (k -1\right ) b y^{\frac {1}{n -r -1}} y^{\frac {r}{n -r -1}} y^{\frac {k n}{n -r -1}} \left (\int x^{m -n} {\mathrm e}^{-\frac {\left (k -1\right ) c x^{-n +r +1}}{\left (n -r -1\right ) a}}d x \right ) {\mathrm e}^{\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}}+a y^{\frac {k}{n -r -1}} y^{\frac {n}{n -r -1}} y^{\frac {k r}{n -r -1}} {\mathrm e}^{\frac {c x^{-n +r +1}}{\left (n -r -1\right ) a}}\right ) c \right ) y^{-\frac {1}{n -r -1}} y^{-\frac {r}{n -r -1}} y^{-\frac {k n}{n -r -1}} {\mathrm e}^{-\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}}}{\left (m -n +1\right ) \left (m -2 n +r +2\right ) \left (m -3 n +2 r +3\right ) a c}\right )^{-\frac {1}{k -1}} {\mathrm e}^{-\frac {c \mathit {\_a}^{-n +r +1}}{\left (n -r -1\right ) a}}\right )^{q}+d \mathit {\_a}^{-n}}{a}d\mathit {\_a} +\mathit {\_F1} \left (\frac {\left (\left (n -r -1\right ) \left (m -2 n +r +2\right )^{2} a b x^{m -r} y^{\frac {1}{n -r -1}} y^{\frac {r}{n -r -1}} y^{\frac {k n}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {-m +n -1}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {m -n +1}{n -r -1}} \left (\frac {\left (k -1\right ) c x^{-n +r +1}}{\left (n -r -1\right ) a}\right )^{\frac {m -2 n +r +2}{2 n -2 r -2}} \WhittakerM \left (\frac {-m +2 n -r -2}{2 n -2 r -2}, \frac {-m +3 n -2 r -3}{2 n -2 r -2}, \frac {\left (k -1\right ) c x^{-n +r +1}}{\left (n -r -1\right ) a}\right ) {\mathrm e}^{\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}} {\mathrm e}^{-\frac {\left (k -1\right ) c x^{-n +r +1}}{2 \left (n -r -1\right ) a}}-\left (n -r -1\right )^{2} \left (-\left (k -1\right ) c x^{-n +r +1}+\left (m -2 n +r +2\right ) a \right ) b x^{m -r} y^{\frac {1}{n -r -1}} y^{\frac {r}{n -r -1}} y^{\frac {k n}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {-m +n -1}{n -r -1}} \left (\frac {\left (k -1\right ) c}{\left (n -r -1\right ) a}\right )^{\frac {m -n +1}{n -r -1}} \left (\frac {\left (k -1\right ) c x^{-n +r +1}}{\left (n -r -1\right ) a}\right )^{\frac {m -2 n +r +2}{2 n -2 r -2}} \WhittakerM \left (\frac {-m +r}{2 n -2 r -2}, \frac {-m +3 n -2 r -3}{2 n -2 r -2}, \frac {\left (k -1\right ) c x^{-n +r +1}}{\left (n -r -1\right ) a}\right ) {\mathrm e}^{\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}} {\mathrm e}^{-\frac {\left (k -1\right ) c x^{-n +r +1}}{2 \left (n -r -1\right ) a}}+\left (m -n +1\right ) \left (m -3 n +2 r +3\right ) \left (m -2 n +r +2\right ) a c y^{\frac {k}{n -r -1}} y^{\frac {n}{n -r -1}} y^{\frac {k r}{n -r -1}} {\mathrm e}^{\frac {c x^{-n +r +1}}{\left (n -r -1\right ) a}}\right ) y^{-\frac {1}{n -r -1}} y^{-\frac {r}{n -r -1}} y^{-\frac {k n}{n -r -1}} {\mathrm e}^{-\frac {c k x^{-n +r +1}}{\left (n -r -1\right ) a}}}{\left (m -n +1\right ) \left (m -2 n +r +2\right ) \left (m -3 n +2 r +3\right ) a c}\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.2.4.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a y^k w_x + b x^m w_y = c x^m + d \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*y^k*D[w[x, y], x] + b*x^m*D[w[x, y], y] == c*x^m + d; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {\left (\left (y^{-k-1}\right )^{-\frac {1}{k+1}}\right )^{-k} \left (b d x \left (\frac {a (m+1) y^{k+1}}{a (m+1) y^{k+1}-b (k+1) x^{m+1}}\right )^{\frac {k}{k+1}} \, _2F_1\left (\frac {k}{k+1},\frac {1}{m+1};1+\frac {1}{m+1};\frac {b (k+1) x^{m+1}}{b (k+1) x^{m+1}-a (m+1) y^{k+1}}\right )+a c y^{k+1}\right )}{a b}+c_1\left (\frac {y^{k+1}}{k+1}-\frac {b x^{m+1}}{a m+a}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*y^k*diff(w(x,y),x) +b*x^n*diff(w(x,y),y) =c*x^m+d; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {\left (c \mathit {\_a}^{m}+d \right ) \left (\left (\frac {\left (n +1\right ) a y^{k +1}+\left (k +1\right ) b \mathit {\_a}^{n +1}-\left (k +1\right ) b x^{n +1}}{\left (n +1\right ) a}\right )^{\frac {1}{k +1}}\right )^{-k}}{a}d\mathit {\_a} +\mathit {\_F1} \left (\frac {\left (n +1\right ) a y^{k +1}-\left (k +1\right ) b x^{n +1}}{\left (n +1\right ) a}\right )\]
____________________________________________________________________________________