Added Feb. 9, 2019.
Problem Chapter 3.4.1.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \sinh (\lambda x)+k\sinh (\mu y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sinh[lambda*x] + k*Sinh[mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )+\frac {c \cosh (\lambda x)}{a \lambda }+\frac {k \cosh (\mu y)}{b \mu }\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*sinh(lambda*x)+k*sinh(mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {a b \lambda \mu \mathit {\_F1} \left (\frac {a y -b x}{a}\right )+a k \lambda \cosh \left (\mu y \right )+b c \mu \cosh \left (\lambda x \right )}{a b \lambda \mu }\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.4.1.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \sinh (\lambda x+\mu y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sinh[lambda*x + mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {c \cosh (\lambda x+\mu y)}{a \lambda +b \mu }+c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*sinh(lambda*x+mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {c \cosh \left (\lambda x +\mu y \right )}{a \lambda +b \mu }+\mathit {\_F1} \left (\frac {a y -b x}{a}\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.4.1.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c x \sinh (\lambda x+\mu y) \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*x*Sinh[lambda*x + mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted
Maple ✓
restart; pde :=a*diff(w(x,y),x) +b*diff(w(x,y),y) =c*x*sinh(lambda*x+mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \frac {-\left (a \sinh \left (\lambda x +\mu y \right )-\left (a \lambda +b \mu \right ) x \cosh \left (\lambda x +\mu y \right )\right ) c +\left (a \lambda +b \mu \right )^{2} \mathit {\_F1} \left (\frac {a y -b x}{a}\right )}{\left (a \lambda +b \mu \right )^{2}}\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.4.1.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \sinh ^n(\lambda x) w_y = c \sinh ^m(\mu x)+s \sinh ^k(\beta y) \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Sinh[lambda*x]*D[w[x, y], y] == c*Sinh[mu*x]^m + s*Sinh[beta*y]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted Kernel Exception
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*sinh(lambda*x)*diff(w(x,y),y) =c*sinh(mu*x)^m+s*sinh(beta*y)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {c \left (\sinh ^{m}\left (\mathit {\_a} \mu \right )\right )+s \left (\sinh ^{k}\left (\frac {\left (a \lambda y +b \cosh \left (\mathit {\_a} \lambda \right )-b \cosh \left (\lambda x \right )\right ) \beta }{a \lambda }\right )\right )}{a}d\mathit {\_a} +\mathit {\_F1} \left (\frac {a \lambda y -b \cosh \left (\lambda x \right )}{a \lambda }\right )\]
____________________________________________________________________________________
Added Feb. 9, 2019.
Problem Chapter 3.4.1.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \sinh ^n(\lambda y) w_y = c \sinh ^m(\mu x)+s \sinh ^k(\beta y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Sinh[lambda*y]*D[w[x, y], y] == c*Sinh[mu*x]^m + s*Sinh[beta*y]^k; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \int _1^x\frac {s \sinh ^k\left (\frac {2 \beta \tanh ^{-1}\left (e^{\frac {b \lambda (K[1]-x)}{a}} \tanh \left (\frac {\lambda y}{2}\right )\right )}{\lambda }\right )+c \sinh ^m(\mu K[1])}{a}dK[1]+c_1\left (\frac {\log \left (\tanh \left (\frac {\lambda y}{2}\right )\right )}{\lambda }-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*sinh(lambda*y)*diff(w(x,y),y) =c*sinh(mu*x)^m+s*sinh(beta*y)^k; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left (x , y\right ) = \int _{}^{x}\frac {c \left (\sinh ^{m}\left (\mathit {\_a} \mu \right )\right )+s \left (\sinh ^{k}\left (\frac {\beta \ln \left (\tanh \left (\frac {a \arctanh \left ({\mathrm e}^{\lambda y}\right )+\frac {\left (-\mathit {\_a} +x \right ) b \lambda }{2}}{a}\right )\right )}{\lambda }\right )\right )}{a}d\mathit {\_a} +\mathit {\_F1} \left (\frac {-b \lambda x -2 a \arctanh \left ({\mathrm e}^{\lambda y}\right )}{b \lambda }\right )\]
____________________________________________________________________________________