Added June 1, 2019.
Problem Chapter 7.2.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a w_y + b w_z = x y z \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*D[w[x, y,z], y] +b*D[w[x,y,z],z]==x*y*z; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {1}{12} x^2 (a x (b x-2 z)-2 b x y+6 y z)+c_1(y-a x,z-b x)\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+b*diff(w(x,y,z),z)=x*y*z; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {a b x^{4}}{12}+\frac {x^{2} y z}{2}+\frac {\left (-2 a z -2 b y \right ) x^{3}}{12}+\mathit {\_F1} \left (-a x +y , -b x +z \right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c w_z = k x^3+s y^2 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*D[w[x,y,z],z]==k*x^3+s*y^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {x \left (3 a^2 \left (k x^3+4 s y^2\right )-12 a b s x y+4 b^2 s x^2\right )}{12 a^3}+c_1\left (y-\frac {b x}{a},z-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*diff(w(x,y,z),z)=k*x^3+s*y^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {k x^{4}}{4 a}+\frac {s x y^{2}}{a}-\frac {b s x^{2} y}{a^{2}}+\frac {b^{2} s x^{3}}{3 a^{3}}+\mathit {\_F1} \left (\frac {a y -b x}{a}, \frac {a z -c x}{a}\right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b y w_y + c z w_z = k x+ s \sqrt x \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +c*z*D[w[x,y,z],z]==k*x+s*Sqrt[x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {6 a c_1\left (y e^{-\frac {b x}{a}},z e^{-\frac {c x}{a}}\right )+3 k x^2+4 s x^{3/2}}{6 a}\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+c*z*diff(w(x,y,z),z)=k*x+s*sqrt(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {k x^{2}}{2 a}+\frac {2 s x^{\frac {3}{2}}}{3 a}+\mathit {\_F1} \left (y \,{\mathrm e}^{-\frac {b x}{a}}, z \,{\mathrm e}^{-\frac {c x}{a}}\right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + a z w_y + b y w_z = c \sqrt x + s \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + a*z*D[w[x, y,z], y] +b*y*D[w[x,y,z],z]==c*Sqrt[x]+s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {e^{-\sqrt {a} \sqrt {b} x} \left (\sqrt {b} y \left (e^{2 \sqrt {a} \sqrt {b} x}+1\right )-\sqrt {a} z \left (e^{2 \sqrt {a} \sqrt {b} x}-1\right )\right )}{2 \sqrt {b}},\frac {e^{-\sqrt {a} \sqrt {b} x} \left (\sqrt {a} z \left (e^{2 \sqrt {a} \sqrt {b} x}+1\right )-\sqrt {b} y \left (e^{2 \sqrt {a} \sqrt {b} x}-1\right )\right )}{2 \sqrt {a}}\right )+\frac {2}{3} c x^{3/2}+s x\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*z*diff(w(x,y,z),y)+b*y*diff(w(x,y,z),z)=c*sqrt(x)+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \int _{}^{y}\frac {\sqrt {\frac {\sqrt {a b}\, x +\ln \left (\frac {\mathit {\_a} a b +\sqrt {a b}\, \sqrt {\left (a z^{2}+\left (\mathit {\_a}^{2}-y^{2}\right ) b \right ) a}}{\sqrt {a b}}\right )-\ln \left (\frac {a b y +\sqrt {a^{2} z^{2}}\, \sqrt {a b}}{\sqrt {a b}}\right )}{\sqrt {a b}}}\, c +s}{\sqrt {\left (a z^{2}+\left (\mathit {\_a}^{2}-y^{2}\right ) b \right ) a}}d\mathit {\_a} +\mathit {\_F1} \left (\frac {a z^{2}-b y^{2}}{a}, -\frac {-\sqrt {a b}\, x +\ln \left (\frac {a b y +\sqrt {a^{2} z^{2}}\, \sqrt {a b}}{\sqrt {a b}}\right )}{\sqrt {a b}}\right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a x^2 w_x + b y^2 w_y + c z^2 w_z = k x y z \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]==k*x*y*z; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {k x y z \left (b y (a x-c z) \log \left (\frac {a x}{y}\right )+c z (b y-a x) \log \left (\frac {a x}{z}\right )\right )}{(a x-b y) (a x-c z) (b y-c z)}+c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*x^2*diff(w(x,y,z),x)+b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=k*x*y*z; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {\left (\left (a x -c z \right ) b y \ln \left (\frac {a x}{y}\right )-\left (a x -b y \right ) c z \ln \left (\frac {a x}{z}\right )\right ) k x y z +\left (b y -c z \right ) \left (a x -b y \right ) \left (a x -c z \right ) \mathit {\_F1} \left (\frac {a x -b y}{a x y}, \frac {a x -c z}{a x z}\right )}{\left (b y -c z \right ) \left (a x -b y \right ) \left (a x -c z \right )}\]
____________________________________________________________________________________