Added June 2, 2019.
From example 3.5.11, page 219 nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\) \[ u_t+u u_x=x \] with \(u(x,0)=f(x)\)
Mathematica ✗
ClearAll["Global`*"]; pde = D[u[x, t], t] +u[x,t]*D[u[x, t], x] ==x; ic = u[x,0]==f[x]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic}, u[x, t], {x, t}], 60*10]];
Failed
Maple ✓
restart; pde := diff(u(x,t),t)+u(x,t)*diff(u(x,t),x)=x; ic := u(x,0)=f(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,t))),output='realtime'));
\[u \left (x , t\right ) = \RootOf \left (\left (\mathit {\_Z} \,{\mathrm e}^{2 t}-2 x \,{\mathrm e}^{t}+{\mathrm e}^{2 t} f \left (\mathit {\_Z} \right )+\mathit {\_Z} -f \left (\mathit {\_Z} \right )\right ) \left (\mathit {\_Z} +f \left (\mathit {\_Z} \right )\right )\right ) {\mathrm e}^{t}+{\mathrm e}^{t} f \left (\RootOf \left (\left (\mathit {\_Z} \,{\mathrm e}^{2 t}-2 x \,{\mathrm e}^{t}+{\mathrm e}^{2 t} f \left (\mathit {\_Z} \right )+\mathit {\_Z} -f \left (\mathit {\_Z} \right )\right ) \left (\mathit {\_Z} +f \left (\mathit {\_Z} \right )\right )\right )\right )-x\]
____________________________________________________________________________________