Added June 3, 2019.
Problem 3.5(b) nonlinear pde’s by Lokenath Debnath, 3rd edition.
Solve for \(u(x,y)\) \[ y u_x+x u_y=0 \] with \(u(0,y)=e^{-y^2}\)
Mathematica ✓
ClearAll["Global`*"]; pde = y*D[u[x, y], x] + x*D[u[x,y],y] == 0; ic = u[0,y]==Exp[-y^2]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde,ic} ,u[x, y], {x, y}], 60*10]];
\[\left \{\left \{u(x,y)\to e^{x^2-y^2}\right \}\right \}\]
Maple ✓
restart; pde :=y*diff(u(x,y),x)+ x*diff(u(x,y),y)= 0; ic := u(0,y)=exp(-y^2); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,ic],u(x,y))),output='realtime'));
\[u \left (x , y\right ) = {\mathrm e}^{x^{2}-y^{2}}\]
____________________________________________________________________________________