Taken from Mathematica DSolve help pages
Initial value problem with Dirichlet boundary conditions. 1D, zero potential.
Solve for \(f(x,t)\) \[ I f_t = - 2 f_{xx} \] With boundary conditions \begin {align*} f(5,t) &= 0\\ f(10,t) &=0 \\ \end {align*}
And initial conditions \(f(x,2)=f(x)\) where \(f(x)=-350 + 155 x - 22 x^2 + x^3\)
Mathematica ✓
ClearAll["Global`*"]; pde = I*D[f[x, t], t] == -2*D[f[x, t], {x, 2}]; g[x_] := -350 + 155*x - 22*x^2 + x^3; ic = f[x, 2] == g[x]; bc = {f[5, t] == 0, f[10, t] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, f[x, t], {x, t}], 60*10]]; sol = sol /. K[1] -> n;
\[ \text {Unable to process latex} \]
Maple ✓
restart; pde :=I*diff(f(x,t),t)=-2*diff(f(x,t),x$2); bc:=f(5,t)=0,f(10,t)=0; g:=x->-350+155*x-22*x^2+x^3; ic:=f(x,2)=g(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],f(x,t))),output='realtime'));
\[ \text {Unable to process latex} \]
____________________________________________________________________________________