Added December 20, 2018.
Third oder PDE. Solve for \(u(x,y)\) \[ u_t + u_{xxx} = 0 \] With initial conditions \begin {align*} u(x,0)&=f(x) \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[x, t], t] == -D[u[x, t], {x, 3}]; ic = u[x, 0] == f[x]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, ic}, u[x, t], {x, t}], 60*10]];
\[\left \{\left \{u(x,t)\to \int _{-\infty }^{\infty } \frac {e^{-i K[1] \left (t K[1]^2+x\right )} \int _{-\infty }^{\infty } \frac {f(x) e^{i x K[1]}}{\sqrt {2 \pi }} \, dx}{\sqrt {2 \pi }} \, dK[1]\right \}\right \}\]
Maple ✓
restart; pde := diff(u(x, t), t)=- diff(u(x, t), x$3); ic := u(x,0)=f(x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic],u(x,t))),output='realtime'));
\[u \left ( x,t \right ) ={\frac {1}{4\,{\pi }^{2}}\int _{-\infty }^{\infty }\!{\frac {4\,\pi \,f \left ( -\zeta \right ) }{3}\sqrt {-{(x+\zeta ){\frac {1}{\sqrt [3]{-t}}}}}\BesselK \left ( {\frac {1}{3}},{\frac {2\,\sqrt {3}}{9} \left ( -{(x+\zeta ){\frac {1}{\sqrt [3]{-t}}}} \right ) ^{{\frac {3}{2}}}} \right ) {\frac {1}{\sqrt [3]{-t}}}}\,{\rm d}\zeta }\]
____________________________________________________________________________________