5.2.1 Cartesian coordinates

5.2.1.1 [394] Rectangular membrane. Fixed on all edges, General solution
5.2.1.2 [395] Rectangular membrane. Fixed on all edges, zero velocity. Specific example
5.2.1.3 [396] All 4 edges fixed, zero initial velocity, Specific example
5.2.1.4 [397] All 4 edges fixed, zero initial velocity, Specific example, delta in center
5.2.1.5 [398] All 4 edges fixed
5.2.1.6 [399] All edges fixed (Haberman 8.5.5 (a)
5.2.1.7 [400] 2 edgs fixed, 2 free, zero initial velocity
5.2.1.8 [401] All 4 edges fixed, zero initial velocity, general solution
5.2.1.9 [402] With damping
5.2.1.10 [403] On the whole plane

5.2.1.1 [394] Rectangular membrane. Fixed on all edges, General solution

problem number 394

Added January 10, 2020.

Solve utt=c4(uxx+uyy)

0<x<L0<y<H

Boundary conditions on x

u(0,y,t)=0u(L,y,t)=0

And boundary conditions on yu(x,0,t)=0u(x,H,t)=0

Initial conditionsu(x,y,0)=f(x,y)ut(x,y,0)=g(x,y)

Mathematica

ClearAll["Global`*"]; 
pde = D[u[x, y, t], {t, 2}] == c^2*Laplacian[u[x, y, t], {x, y}]; 
ic = {Derivative[0, 0, 1][u][x, y, 0] == g[x, y], u[x, y, 0] == f[x, y]}; 
bc = {u[0, y, t] == 0, u[0, H, t] == 0, u[x, 0, t] == 0, u[x, L, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, y, t], {x, y, t},Assumptions -> {H > 0, L > 0, c > 0}], 60*10]];
 

Failed

Maple

restart; 
pde := diff(u(x, y, t), t$2) = c^2*VectorCalculus:-Laplacian(u(x,y,t),[x,y]); 
bc  := u(0,y,t)=0, 
       u(L,y,t)=0, 
       u(x, 0, t) = 0, 
       u(x, H, t) = 0; 
ic  := u(x, y, 0) = f(x,y),(D[3](u))(x, y, 0) = g(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,y,t))assuming L>0,H>0),output='realtime')); 
sol := subs(n1=m,sol);
 

Failed to convert to latex

Hand solution

Assuming u=X(x)Y(y)T(t) and substituting into the PDE gives1c2TXY=XYT+YXT1c2TT=XX+YY

Therefore1c2TT=λXX+YY=λ

The time ODE becomesT+c2λT=0 And the space ODE isXX+YY=λ Separating this again givesXX=λYY Let the second separation variable be μ. This gives two new ODE’s to solveXX=μλYY=μ

OrX+μX=0Y+Y(λμ)=0

Solving for X(x) ODE first, and knowing that only μ>0 will give non trivial solutions (from the nature of the boundary conditions), gives the solution asX(x)=Acos(μx)+Bsin(μx) Applying B.C. at x=0 results in0=A Therefore X(x)=Bsin(μx). Applying the B.C. at x=L gives0=Bsin(μL) For non trivial solutionμL=nπμ=(nπL)2n=1,2,3,

Therefore the Xn(x) eigenfunctions areXn(x)=Bnsin(nπLx)n=1,2,3, Now, solving the Y(y) ODE aboveY+Y(λ(nπL)2)=0 The solution isYn(y)=Acos(λ(nπL)2y)+Bsin(λ(nπL)2y) Applying first B.C. gives 0=A HenceYn(y)=Bsin(λ(nπL)2y) Applying the second B.C. gives0=Bsin(λ(nπL)2H) For non trivial solutionλ(nπL)2H=mπm=1,2,3,λnm(nπL)2=(mπH)2λnm=(mπH)2+(nπL)2n=1,2,3,,m=1,2,3,

Hence the Ynm(y) solution isYnm=Bnmsin(mπHy)n=1,2,3,,m=1,2,3, The time ode T(t) is now solvedTnm+c2λnmTnm=0Tnm(t)=Anmcos(cλnmt)+Bnmsin(cλnmt)

Combining all solutions, and merging all constants into two results inunm(x,y,t)=Xn(x)Ynm(y)Tnm(t)u(x,y,t)=n=1m=1Xm(x)Ymn(y)Tmn(t)=n=1m=1Anmsin(nπLx)sin(mπHy)cos(cλnmt)(1)+n=1m=1Bnmsin(nπLx)sin(mπHy)sin(cλnmt)

Initial conditions are now used to find Anm,Bnm. At t=0u(x,y,0)=f(x,y)ut(x,y,0)=g(x,y)

Applying first initial condition to (1)  givesf(x,y)=n=1(m=1Anmsin(mπHy))sin((nπL)x) Applying 2D orthogonality gives0L0Hf(x,y)sin((nπL)x)sin(mπHy) dxdy=Anm(L2)(H2)Anm=4LH0L0Hf(x,y)sin((nπL)x)sin(mπHy) dxdy

Taking time derivative of (1) givesut(x,y,t)=n=1m=1cλnmAnmsin(nπLx)sin(mπHy)sin(cλnmt)+n=1m=1cλnmBnmsin(nπLx)sin(mπHy)cos(cλnmt)

At t=0 the above becomesg(x,y)=n=1m=1cλnmBnmsin((nπL)x)sin(mπHy) Applying 2D orthogonality gives0L0Hg(x,y)sin(nπLx)sin(mπHy) dxdy=Bnm(L2)(H2)Bnm=4LH0L0Hg(x,y)sin(nπLx)sin(mπHy) dxdy

Summary of solutionu(x,y,t)=n=1(m=1Anmsin(mπHy)cos(cλnmt))sin(nπLx)+n=1(m=1Bnmsin(mπHy)sin(cλnmt))sin(nπLx)Anm=4LH0L0Hf(x,y)sin((nπL)x)sin(mπHy) dxdyBnm=4LH0L0Hg(x,y)sin((nπL)x)sin(mπHy) dxdyλnm=(mπH)2+(nπL)2

____________________________________________________________________________________

5.2.1.2 [395] Rectangular membrane. Fixed on all edges, zero velocity. Specific example

problem number 395

Added January 10, 2020.

Solve utt=c4(uxx+uyy)

0<x<L0<y<H

Boundary conditions on x

u(0,y,t)=0u(L,y,t)=0

And boundary conditions on yu(x,0,t)=0u(x,H,t)=0

Initial conditionsu(x,y,0)=f(x,y)ut(x,y,0)=g(x,y)

Using L=1,H=2,c=110,f(x,y)=xcos(y),g(x,y)=0.

Mathematica

ClearAll["Global`*"]; 
L=1;H=2;c=1/10; 
f[x_,y_]:=x*Cos[y]; 
g[x_,y_]:=0; 
pde = D[u[x, y, t], {t, 2}] == c^2*Laplacian[u[x, y, t], {x, y}]; 
ic = {Derivative[0, 0, 1][u][x, y, 0] == g[x, y], u[x, y, 0] == f[x, y]}; 
bc = {u[0, y, t] == 0, u[0, H, t] == 0, u[x, 0, t] == 0, u[x, L, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, y, t], {x, y, t}], 60*10]];
 

Failed

Maple

restart; 
L:=1; 
H:=2; 
c:=1/10; 
f:=(x,y)->x*cos(y); 
g:=(x,y)->0; 
pde := diff(u(x, y, t), t$2) = c^2*VectorCalculus:-Laplacian(u(x,y,t),[x,y]); 
bc  := u(0,y,t)=0, 
       u(L,y,t)=0, 
       u(x, 0, t) = 0, 
       u(x, H, t) = 0; 
ic  := u(x, y, 0) = f(x,y),(D[3](u))(x, y, 0) = g(x,y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,y,t))),output='realtime')); 
sol := subs(n1=m,sol);
 

u(x,y,t)=m=1(n=14sin(nπx)sin(1/2mπy)cos(1/20πm2+4n2t)m(cos(2)(1)m+n(1)n)n(π2m24))

Hand solution

The basic solution for this type of PDE was already given in problem 5.2.1.1 on page 1492 as

u(x,y,t)=n=1(m=1Anmsin(mπHy)cos(cλnmt))sin(nπLx)+n=1(m=1Bnmsin(mπHy)sin(cλnmt))sin(nπLx)Anm=4LH0L0Hf(x,y)sin(nπLx)sin(mπHy) dxdyBnm=4LH0L0Hg(x,y)sin(nπLx)sin(mπHy) dxdyλnm=(mπH)2+(nπL)2n=1,2,3,,m=1,2,3,

In this problem L=1H=2c=110f(x,y)=xcosyg(x,y)=0

Hence the solution becomes

u(x,y,t)=n=1(m=1Anmsin(mπ2y)cos(110λnmt))sin(nπx)+n=1(m=1Bnmsin(mπ2y)sin(110λnmt))sin(nπx)Anm=20102xcosysin(nπx)sin(mπ2y) dxdyBnm=0λnm=(mπ2)2+(nπ)2n=1,2,3,,m=1,2,3,

But Anm=20102xcosysin(nπx)sin(mπ2y) dxdy=4(1)nm(1+(1)mcos(2))n(m2π24)

Hence the solution simplifies to

u(x,y,t)=n=1(m=14(1)nm(1+(1)mcos(2))n(m2π24)sin(mπ2y)cos(110(mπ2)2+(nπ)2t))sin(nπx)=n=1(m=14(1)nm(1+(1)mcos(2))n(m2π24)cos(πm2+4n220t)sin(mπ2y))sin(nπx)

Animation is below

Source code used for the above

____________________________________________________________________________________

5.2.1.3 [396] All 4 edges fixed, zero initial velocity, Specific example

problem number 396

Added June 17, 2019

Solve for u(x,y,t) with 0<x<L and 0<y<H and t>0.

Solve utt=c22u(x,y) With boundary conditions u(x,0,t)=0u(0,y,t)=0u(L,y,t)=0u(x,H,t)=0

With initial conditions u(x,y,0)=3f1(x)f2(y)ut(x,y,0)=0

And f1(x)={x0<x<L2LxL2<x<L Where f2(y)={y0<y<H2HyH2<y<H And L=2,H=3 and c=13.

Mathematica

ClearAll["Global`*"]; 
L=2; 
H=3; 
c=1/3; 
f1[x_] :=Piecewise[{{x, x < L/2}, {L - x, x > L/2}}]; 
f2[y_] := Piecewise[{{y, y < H/2}, {H - y, y > H/2}}]; 
pde =  D[u[x, y, t], {t, 2}] == c^2 * Laplacian[u[x, y, t], {x, y}]; 
ic  = {u[x, y, 0] == 3*f1[x]*f2[y], Derivative[0, 0, 1][u][x, y, 0] == 0}; 
bc  = {u[x, 0, t] == 0, u[0, y, t] == 0, u[L, y, t] == 0, u[x, H, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, y, t], {x, y, t}], 60*10]]; 
sol =  sol /. {K[1] -> n, K[2] -> m};
 

{{u(x,y,t){n=1K[3]=1288cos(118πt9n2+4K[3]2)sin(nπ2)sin(nπx2)sin(12πK[3])sin(13πyK[3])n2π4K[3]2(n|K[3])Zn1K[3]1IndeterminateTrue}}

Maple

restart; 
L   := 2; 
H   := 3; 
c   := 1/3; 
f1  := x-> piecewise(x < L/2,x, x > L/2,L - x); 
f2  := y-> piecewise(y < H/2,y, y > H/2,H - y); 
pde := diff(u(x, y, t), t$2) = c^2* VectorCalculus:-Laplacian(u(x, y, t), 'cartesian'[x, y]); 
ic  := u(x,y,0)=3*f1(x)*f2(y),D[3](u)(x,y,0)=0; 
bc  := u(x,0,t)=0,u(0,y,t)=0,u(L,y,t)=0,u(x,H,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(x, y, t))),output='realtime')); 
sol := subs(n1=m,sol);
 

u(x,y,t)=m=1(n=1288sin(1/3mπy)sin(1/2nπx)cos(1/18π4m2+9n2t)sin(1/2nπ)sin(1/2mπ)n2π4m2)

Hand solution

The basic solution for this type of PDE was already given in problem 5.2.1.8 on page 1533 asu(x,y,t)=n=1m=1Anmsin(nπLx)sin(mπHy)cos(c(mπH)2+(nπL)2t)Anm=4LH0L0Hf(x,y)sin(nπLx)sin(mπHy) dxdy

In this problem L=2H=3c=13f(x,y)=3f1(x)f2(y)

Andf1(x)={x0<x<L2LxL2<x<L Andf2(y)={y0<y<H2HyH2<y<H This is animation of the above solution using these specific values for for 40 seconds. (Animation will only show in the HTML version)

Source code used for the above

The following shows selected modes. For example, for n=1,m=1 the solution becomesu(x,y,t)=A1,1sin(πLx)sin(πHy)cos(c(πH)2+(1πL)2t) And for n=1,m=5 then the solution becomesu(x,y,t)=A1,5sin(πLx)sin(5πHy)cos(c(5πH)2+(πL)2t) And so on.

n

m

animation

1

1

1

3

1

5

3

1

3

5

5

1

5

3

____________________________________________________________________________________

5.2.1.4 [397] All 4 edges fixed, zero initial velocity, Specific example, delta in center

problem number 397

Added June 18, 2019

Solve for u(x,y,t) with 0<x<L and 0<y<H and t>0.

Solve utt=c22u(x,y) With boundary conditions u(x,0,t)=0u(0,y,t)=0u(L,y,t)=0u(x,H,t)=0

With initial conditions u(x,y,0)=f(x,y)ut(x,y,0)=0

And L=20H=30c=13f(x,y)=f1(x)f2(y)

Where f(x,y) is an approximation of delta in the middle of the membrane f1(x)={145100L<x<55100L0otherwise Andf2(y)={145100H<y<55100H0otherwise

Mathematica

ClearAll["Global`*"]; 
L  = 20; 
H  = 30; 
c  = 1/3; 
f1[x] := Piecewise[{{1,45/100*L <= x<= 55/100*L},{0,True}}]; 
f2[y] := Piecewise[{{1,45/100*H<= y<= 55/100*H},{0,True}}]; 
pde =  D[u[x, y, t], {t, 2}] == c^2 * Laplacian[u[x, y, t], {x, y}]; 
ic  = {u[x, y, 0] == f1[x]*f2[y], Derivative[0, 0, 1][u][x, y, 0] == 0}; 
bc  = {u[x, 0, t] == 0, u[0, y, t] == 0, u[L, y, t] == 0, u[x, H, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, y, t], {x, y, t}], 60*10]]; 
sol =  sol /. {K[1] -> n, K[2] -> m};
 

{{u(x,y,t){n=1K[3]=14(cos(9nπ20)cos(11nπ20))(cos(920πK[3])cos(1120πK[3]))cos(1180πt9n2+4K[3]2)sin(nπx20)sin(130πyK[3])nπ2K[3](n|K[3])Zn1K[3]1IndeterminateTrue}}

Maple

restart; 
L   := 20; 
H   := 30; 
c   := 1/3; 
f1  := x-> piecewise(x>45/100*L and x< 55/100*L,1, true,0); 
f2  := y-> piecewise(y>45/100*H and y< 55/100*H,1, true,0); 
pde := diff(u(x, y, t), t$2) = c^2* VectorCalculus:-Laplacian(u(x, y, t), 'cartesian'[x, y]); 
ic  := u(x,y,0)=f1(x)*f2(y),D[3](u)(x,y,0)=0; 
bc  := u(x,0,t)=0,u(0,y,t)=0,u(L,y,t)=0,u(x,H,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(x, y, t))),output='realtime')); 
sol := subs(n1=m,sol);
 

u(x,y,t)=m=1(n=116sin(1/20nπx)sin(1/30mπy)(sin(1/20nπ))2cos(1/20nπ)(12cos(1/5nπ)+2cos(1/10nπ))(1+2cos(1/10nπ)2cos(1/20nπ))(1+2cos(1/10nπ)+2cos(1/20nπ))nπ2mcos(π4m2+9n2t180)(cos(11mπ20)+cos(9mπ20)))

Hand solution

The basic solution for this type of PDE was already given in problem 5.2.1.8 on page 1533 asu(x,y,t)=n=1m=1Anmsin(nπLx)sin(mπHy)cos(c(mπH)2+(nπL)2t)Anm=4LH0L0Hf(x,y)sin(nπLx)sin(mπHy) dxdy

In this problem L=20H=30c=13f(x,y)=f1(x)f2(y)

Where f(x,y) is an approximation of delta in the middle of the membrane f1(x)={145100L<x<55100L0otherwise Andf2(y)={145100H<y<55100H0otherwise This is animation of the above solution using these specific values for for 40 seconds. (Animation will only show in the HTML version)

Source code used for the above

____________________________________________________________________________________

5.2.1.5 [398] All 4 edges fixed

problem number 398

Taken from Mathematica helps pages on DSolve

Solve for u(x,y,t) with 0<x<1 and 0<y<2 and t>0.

Solve 2ut2=2ux2+2uy2 With boundary conditions u(x,0,t)=0u(0,y,t)=0u(1,y,t)=0u(x,2,t)=0

With initial conditions u(x,y,0)=110(xx2)(2yy2)ut(x,y,0)=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, y, t], {t, 2}] == Laplacian[u[x, y, t], {x, y}]; 
ic  = {u[x, y, 0] == (1/10)*(x - x^2)*(2*y - y^2), Derivative[0, 0, 1][u][x, y, 0] == 0}; 
bc  = {u[x, 0, t] == 0, u[0, y, t] == 0, u[1, y, t] == 0, u[x, 2, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, y, t], {x, y, t}], 60*10]]; 
sol =  sol /. {K[1] -> n, K[2] -> m}; 
sol =  Assuming[Element[{n, m}, Integers], FullSimplify[sol]];
 

{{u(x,y,t){n=1K[3]=132(1+(1)n)(1+(1)K[3])cos(12πt4n2+K[3]2)sin(nπx)sin(12πyK[3])5n3π6K[3]3K[3]Zn1K[3]1IndeterminateTrue}}

Maple

restart; 
pde := diff(u(x, y, t), t$2) =  VectorCalculus:-Laplacian(u(x, y, t), 'cartesian'[x, y]); 
ic  := u(x,y,0)=(1/10)*(x-x^2)*(2*y-y^2),(D[3](u))(x,y,0)=0; 
bc  := u(x,0,t)=0,u(0,y,t)=0,u(1,y,t)=0,u(x,2,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(x, y, t))),output='realtime')); 
sol := subs(n1=m,sol);
 

u(x,y,t)=m=1(n=132sin(nπx)sin(1/2mπy)cos(1/2πm2+4n2t)((1)m+n+(1)m+(1)n1)5n3π6m3)

____________________________________________________________________________________

5.2.1.6 [399] All edges fixed (Haberman 8.5.5 (a)

problem number 399

Added Nov 27, 2018.

This is problem 8.5.5 part(a) from Richard Haberman applied partial differential equations 5th edition.

Solve the initial value problem for membrane with time-dependent forcing and fixed boundaries u=0. utt=c22u+Q(x,y,t) If the memberane is rectangle (0<x<L,0<y<H). With initial conditions u(x,y,0)=f(x,y)ut(x,y,0)=0

See my HW9, Math 322, UW Madison.

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, y, t], {t, 2}] == c^2*Laplacian[u[x, y, t], {x, y}] + Q[x, y, t]; 
ic  = {u[x, y, 0] == f[x, y], Derivative[0, 0, 1][u][x, y, 0] == 0}; 
bc  = {u[0, y, t] == 0, u[L, y, t] == 0, u[x, 0, t] == 0, u[x, H, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, y, t], {x, y, t}, Assumptions -> {L > 0, H > 0, t > 0, c > 0}], 60*10]];
 

{{u(x,y,t){K[1]=1K[3]=121H1L(0t2(0L0HQ(x,y,K[4])sin(πxK[1]L)sin(πyK[3]H)dydx)sin(cπK[1]2L2+K[3]2H2(tK[4]))cπHK[1]2L+LK[3]2HdK[4]+2cos(cπtK[1]2L2+K[3]2H2)0L0Hf(x,y)sin(πxK[1]L)sin(πyK[3]H)dydxHL)sin(πxK[1]L)sin(πyK[3]H)(K[1]|K[3])ZK[1]1K[3]1IndeterminateTrue}}

Maple

restart; 
interface(showassumed=0); 
pde := diff(u(x,y,t),t$2)=c^2*(diff(u(x,y,t),x$2)+diff(u(x,y,t),y$2))+Q(x,y,t); 
bc  := u(0,y,t)=0,u(L,y,t)=0,u(x,0,t)=0,u(x,H,t)=0; 
ic  := u(x,y,0)=f(x,y), eval( diff(u(x,y,t),t),t=0)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,y,t)) assuming L>0,H>0,c>0,t>0),output='realtime'));
 

sol=()

____________________________________________________________________________________

5.2.1.7 [400] 2 edgs fixed, 2 free, zero initial velocity

problem number 400

Taken from Maple PDE help pages. This wave PDE inside square with free to move on left edge and right edge, and top and bottom edges are fixed. It has zero initial velocity, but given a non-zero initial position. Where 0<x<π and 0<y<π and t>0.

Solve utt=14(2ux2+2uy2) With boundary conditions uxu(0,y,t)=0uxu(π,y,t)=0u(x,0,t)=0u(x,π,0)=0

With initial conditions ut(x,y,0)=0u(x,0)=xy(πy)

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, y, t], {t, 2}] == (1*(D[u[x, y, t], {x, 2}] + D[u[x, y, t], {y, 2}]))/4; 
ic  = {Derivative[0, 0, 1][u][x, y, 0] == 0, u[x, y, 0] == x*y*(Pi - y)}; 
bc  = {Derivative[1, 0, 0][u][0, y, t] == 0, Derivative[1, 0, 0][u][Pi, y, t] == 0, u[x, 0, t] == 0, u[x, Pi, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, y, t], {x, y, t}], 60*10]];
 

{{u(x,y,t){K[3]=12(1+(1)K[3])cos(12tK[3])sin(yK[3])K[3]3+K[1]=1K[3]=18(1+(1)K[1])(1+(1)K[3])cos(xK[1])cos(12tK[1]2+K[3]2)sin(yK[3])π2K[1]2K[3]3(K[1]|K[3])ZK[1]1K[3]1IndeterminateTrue}}

Maple

restart; 
pde := diff(u(x, y, t), t, t) = (1/4)*(diff(u(x, y, t), x, x))+(1/4)*(diff(u(x, y, t), y, y)); 
bc  := (D[1](u))(0, y, t) = 0, 
       (D[1](u))(Pi, y, t) = 0, 
       u(x, 0, t) = 0, 
       u(x, Pi, t) = 0; 
ic  := u(x, y, 0) = x*y*(Pi-y),(D[3](u))(x, y, 0) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc,ic],u(x,y,t))),output='realtime')); 
sol := subs(n1=m,sol);
 

u(x,y,t)=n=12((1)n1)sin(ny)cos(1/2nt)n3+n=1(m=18(1+(1)m+(1)n(1)n+m)cos(mx)sin(ny)cos(1/2m2+n2t)π2m2n3)

____________________________________________________________________________________

5.2.1.8 [401] All 4 edges fixed, zero initial velocity, general solution

problem number 401

Added June 16, 2019

Solve for u(x,y,t) with 0<x<L and 0<y<H and t>0.

Solve utt=c22u(x,y) With boundary conditions u(x,0,t)=0u(0,y,t)=0u(L,y,t)=0u(x,H,t)=0

With initial conditions u(x,y,0)=f(x,y)ut(x,y,0)=0

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, y, t], {t, 2}] == c^2 * Laplacian[u[x, y, t], {x, y}]; 
ic  = {u[x, y, 0] == f[x,y], Derivative[0, 0, 1][u][x, y, 0] == 0}; 
bc  = {u[x, 0, t] == 0, u[0, y, t] == 0, u[L, y, t] == 0, u[x, H, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, ic, bc}, u[x, y, t], {x, y, t}], 60*10]]; 
sol =  sol /. {K[1] -> n, K[2] -> m};
 

{{u(x,y,t){n=1K[3]=14cos(πtc2(n2L2+K[3]2H2))(0L0Hf(x,y)sin(nπxL)sin(πyK[3]H)dydx)sin(nπxL)sin(πyK[3]H)HL(n|K[3])Zn1K[3]1c2H2L2(H2n2+L2K[3]2)>0IndeterminateTrue}}

Maple

restart; 
pde := diff(u(x, y, t), t$2) = c^2* VectorCalculus:-Laplacian(u(x, y, t), 'cartesian'[x, y]); 
ic  := u(x,y,0)=f(x,y),D[3](u)(x,y,0)=0; 
bc  := u(x,0,t)=0,u(0,y,t)=0,u(L,y,t)=0,u(x,H,t)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(x, y, t))),output='realtime')); 
sol := subs(n1=m,sol);
 

time expired

Hand solution

Solve for u(r,θ,t)utt=c22u(x,y) With boundary conditions such that all edges are fixed, and initial conditions u(x,y,0)=f(x,y) and initial velocity g(x,y)=0.

Let u=X(x)Y(y)T(t). Substituting into the above PDE gives1c2TXY=XYT+YXT1c2TT=XX+YY

Hence1c2TT=λXX+YY=λ

The time ODE becomesT+c2λT=0 And the space ODE isXX+YY=λXX=λYY

Using a new separation variable μ gives the following two ODE’sXX=μλYY=μ

OrX+μX=0X(0)=0X(L)=0

AndY+Y(λμ)=0Y(0)=0Y(H)=0

Solving first for the X(x) ODE, and knowing that μ must be positive only here from the nature of the boundary conditions givesX=Acos(μx)+Bsin(μx) Applying B.C. at x=00=A Hence solution becomes X(x)=Bsin(μx). Applying the B.C. at x=L gives0=Bsin(μL) Non trivial solution requires thatμL=nπn=1,2,3,μn=(nπL)2

Therefore the eigenfunctions Xn(x) areXn(x)=sin(nπLx)n=1,2,3, Solving the Y(y) ODEYn+(λ(nπL)2)Yn=0n=1,2,3, The nature of the boundary conditions on Y(y) suggests that (λ(nπL)2) must be positive (if λ(nπL)2=0 or λ(nπL)2<0, trivial solutions result).

Hence the solution for Yn(y) becomesYn(y)=Acos(λ(nπL)2y)+Bsin(λ(nπL)2y) Applying first B.C. Y(0)=0 gives0=A The solution becomesYn(y)=Bnsin(λ(nπL)2y) Applying second B.C. Y(H)=0 gives0=Bsin(λ(nπL)2H) Non trivial solution requires thatλ(nπL)2H=mπn=1,2,3,,m=1,2,3,λnm(nπL)2=(mπH)2λnm=(mπH)2+(nπL)2

Hence the Ynm(y) eigenfunctions areYnm(y)=sin(mπHy)n=1,2,3,,m=1,2,3, Now the time T(t) ode is solved, and since λnm is positive, then Tnm+c2λnmTnm=0Tnm(t)=Anmcos(cλnmt)+Bnmsin(cλnmt)=Anmcos(c(mπH)2+(nπL)2t)+Bnmsin(c(mπH)2+(nπL)2t)

Combining all solution , and merging all constants into two results in

unm(x,y,t)=Xn(x)Ynm(y)Tnm(t)u(x,y,t)=n=1m=1Xn(x)Ynm(y)Tnm(t)(1)=n=1m=1Anmsin(nπLx)sin(mπHy)cos(c(mπH)2+(nπL)2t)+n=1m=1Bnmsin(nπLx)sin(mπHy)sin(c(mπH)2+(nπL)2t)

Initial conditions are now used to find Anm,Bnm. At t=0

u(x,y,0)=f(x,y)ut(x,y,0)=0

Applying first initial condition to (1)  givesf(x,y)=n=1m=1Anmsin(nπLx)sin(mπHy) Applying 2D orthogonality gives0L0Hf(x,y)sin(nπLx)sin(mπHy) dxdy=Anm(L2)(H2)Anm=4LH0L0Hf(x,y)sin(nπLx)sin(mπHy) dxdy

Taking time derivative of (1) givesut(x,y,t)=n=1m=1c(mπH)2+(nπL)2Anmsin(nπLx)sin(mπHy)sin(c(mπH)2+(nπL)2t)+n=1m=1c(mπH)2+(nπL)2Bnmsin(nπLx)sin(mπHy)cos(c(mπH)2+(nπL)2t)

AT t=0 the above becomes0Hg(x,y)=n=1m=1c(mπH)2+(nπL)2Bnmsin(nπLx)sin(mπHy) Applying 2D orthogonality gives0L0Hg(x,y)sin((nπL)x)sin(mπHy) dxdy=Bnm(L2)(H2) But the initial velocity g(x,y)=0. Hence Bnm=0 for all n,m.

Summary of solutionu(x,y,t)=n=1m=1Anmsin(nπLx)sin(mπHy)cos(c(mπH)2+(nπL)2t)Anm=4LH0L0Hf(x,y)sin(nπLx)sin(mπHy) dxdy

____________________________________________________________________________________

5.2.1.9 [402] With damping

problem number 402

Taken from Maple PDE help pages. This wave PDE inside square with damping present.

Membrane is free to move on the right edge and also on top edge. But fixed at left edge and bottom edge.

It has zero initial position, but given a non-zero initial velocity. Where 0<x<1 and 0<y<1 and t>0. Solve utt+110ut=142u(x,y) With boundary conditions u(0,y,t)=0uxu(1,y,t)=0u(x,0,t)=0uyu(x,1,t)=0

With initial conditions u(x,y,0)=0ut(x,y,0)=x(112x)(112y)y

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, y, t], {t, 2}] == (1*(D[u[x, y, t], {x, 2}] + D[u[x, y, t], {y, 2}]))/4 - (1*D[u[x, y, t], t])/10; 
ic  = {u[x, y, 0] == 0, Derivative[0, 0, 1][u][x, y, 0] == x*(1 - (1/2)*x)*(1 - (1/2)*y)*y}; 
bc  = {u[0, y, t] == 0, Derivative[1, 0, 0][u][1, y, t] == 0, u[x, 0, t] == 0, Derivative[0, 1, 0][u][x, 1, t] == 0}; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[{pde, bc, ic}, u[x, y, t], {x, y, t}], 60*10]];
 

{{u(x,y,t){K[1]=1K[3]=15120et/20sin(12πx(2K[1]1))sin(12πy(2K[3]1))sin(120t50π2(2K[1]22K[1]+2K[3]22K[3]+1)1)π6(2K[1]1)3(2K[3]1)350π2(2K[1]22K[1]+2K[3]22K[3]+1)1(K[1]|K[3])ZK[1]1K[3]1IndeterminateTrue}}

Maple

restart; 
pde := diff(u(x, y, t), t$2) = 1/4*(diff(u(x, y, t), x$2)+diff(u(x, y, t), y$2))-(1/10)*(diff(u(x, y, t), t)); 
bc  := u(0, y, t) = 0, 
      (D[1](u))(1, y, t) = 0, 
      u(x, 0, t) = 0, 
      (D[2](u))(x, 1, t) = 0; 
ic  := u(x, y, 0) = 0, (D[3](u))(x, y, 0) = x*(1-(1/2)*x)*(1-(1/2)*y)*y; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, ic,bc], u(x, y, t))),output='realtime')); 
sol := subs(n1=m,sol);
 

u(x,y,t)=m=0(n=05120et/20sin(1/2(1+2m)πy)sin(1/2(1+2n)πx)sin(1/20t1+(100m2+100n2+100m+100n+50)π2)1+(100m2+100n2+100m+100n+50)π2π6(1+2m)3(1+2n)3)

____________________________________________________________________________________

5.2.1.10 [403] On the whole plane

problem number 403

From Mathematica DSolve help pages.

Hyperbolic partial differential equation with non-rational coefficients.

Solve for u(x,y) uxx2sinxuxycos2xuyycosxuy=0

Mathematica

ClearAll["Global`*"]; 
ode = D[u[x, y], {x, 2}] - 2*Sin[x]*D[u[x, y], x, y] - Cos[x]^2*D[u[x, y], {y, 2}] - Cos[x]*D[u[x, y], y] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[ode, u[x, y], {x, y}], 60*10]];
 

{{u(x,y)c1(xcos(x)+y)+c2(xcos(x)+y)}}

Maple

restart; 
interface(showassumed=0); 
ode := diff(u(x, y), x$2) - 2*sin(x)*diff(u(x, y),x,y)-cos(x)^2*diff(u(x, y), y$2) - cos(x)*diff(u(x, y), y) = 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(ode, u(x, y))),output='realtime'));
 

sol=()

____________________________________________________________________________________