5.3.2 Cylindrical coordinates

5.3.2.1 [415] No I.C. no B.C.

5.3.2.1 [415] No I.C. no B.C.

problem number 415

Added Jan 10, 2019.

Solve for u(r,ϕ,z,t) the wave PDE in 3D utt=c22u

Mathematica

ClearAll["Global`*"]; 
lap = Laplacian[u[r, phi, z, t], {r, phi, z}, "Cylindrical"]; 
pde =  D[u[r, phi, z, t], {t, 2}] == c^2*lap; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, u[r, phi, z, t], {r, phi, z, t}], 60*10]];
 

{{u(r,ϕ,z,t){ec9ϕzc10tc11(Jc9(rc2c10c11c2)c1+Yc9(rc2c10c11c2)c2)(e2ϕc9c3+c4)(e2zc10c5+c6)(e2tc11c7+c8)c0IndeterminateTrue}}

Maple

restart; 
lap :=VectorCalculus:-Laplacian( u(r,phi,z,t), 'cylindrical'[r,phi,z] ); 
pde := diff(u(r,phi,z,t),t$2)= c^2* lap; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(r,phi,z,t),'build')),output='realtime'));
 

u(r,ϕ,z,t)=((e_c2ϕ)2_C3+_C4)((e_c4t)2_C7+_C8)((e_c3z)2_C5+_C6)e_c2ϕe_c3ze_c4t(_C1BesselJ(_c2,_c3c2_c4rc)+_C2BesselY(_c2,_c3c2_c4rc))