Added January 29, 2019.
Problem 2.7.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( a \arccos ^k(\lambda x) + b \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*ArcCos[lambda*x]^k + b)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {a \cos ^{-1}(\lambda x)^k \left (-i \cos ^{-1}(\lambda x)\right )^{-k} \text {Gamma}\left (k+1,-i \cos ^{-1}(\lambda x)\right )+a \left (i \cos ^{-1}(\lambda x)\right )^{-k} \cos ^{-1}(\lambda x)^k \text {Gamma}\left (k+1,i \cos ^{-1}(\lambda x)\right )+2 b \lambda x-2 \lambda y}{2 \lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( a*arccos(lambda*x)^k + b )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -bx+y+{\frac {a{2}^{k}\sqrt {\pi }}{\lambda } \left ( {\frac { \left ( \arccos \left ( \lambda \,x \right ) \right ) ^{k+1}{2}^{-k}}{\sqrt {\pi } \left ( k+2 \right ) }\sqrt {-{\lambda }^{2}{x}^{2}+1}}-{\frac {{2}^{-k}}{\sqrt {\pi } \left ( k+2 \right ) }\sqrt {\arccos \left ( \lambda \,x \right ) }\LommelS 1 \left ( k+{\frac {3}{2}},{\frac {3}{2}},\arccos \left ( \lambda \,x \right ) \right ) \sqrt {-{\lambda }^{2}{x}^{2}+1}}-3\,{\frac {{2}^{-1-k} \left ( 2/3\,k+4/3 \right ) \left ( \lambda \,x\arccos \left ( \lambda \,x \right ) -\sqrt {-{\lambda }^{2}{x}^{2}+1} \right ) \LommelS 1 \left ( k+1/2,1/2,\arccos \left ( \lambda \,x \right ) \right ) }{\sqrt {\pi } \left ( k+2 \right ) \sqrt {\arccos \left ( \lambda \,x \right ) }}} \right ) } \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( a \arccos ^k(\lambda y) + b \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*ArcCos[lambda*y]^k + b)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\int _1^y\frac {1}{a \cos ^{-1}(\lambda K[1])^k+b}dK[1]-x\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( a*arccos(lambda*y)^k + b )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int \! \left ( a \left ( \arccos \left ( y\lambda \right ) \right ) ^{k}+b \right ) ^{-1}\,{\rm d}y+x \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + k \arccos ^n(a x+b y+c) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + k*ArcCos[a*x + b*y + c]^n*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+k*arccos(a*x+b*y+c)^n*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -\int ^{{\frac {ax+by}{b}}}\! \left ( k \left ( \arccos \left ( {\it \_a}\,b+c \right ) \right ) ^{n}b+a \right ) ^{-1}{d{\it \_a}}b+x \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + a \arccos ^k(\lambda x) \arccos ^n(\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*ArcCos[lambda*x]^k*ArcCos[mu*y]^n*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\left (\cos ^{-1}(\lambda x)^2\right )^{-k} \left (-a \left (i \cos ^{-1}(\lambda x)\right )^k \cos ^{-1}(\lambda x)^k \text {Gamma}\left (k+1,-i \cos ^{-1}(\lambda x)\right )-a \left (-i \cos ^{-1}(\lambda x)\right )^k \cos ^{-1}(\lambda x)^k \text {Gamma}\left (k+1,i \cos ^{-1}(\lambda x)\right )+\frac {\lambda \left (\cos ^{-1}(\lambda x)^2\right )^k \cos ^{-1}(\mu y)^{-n} \left (\left (-i \cos ^{-1}(\mu y)\right )^n \text {Gamma}\left (1-n,-i \cos ^{-1}(\mu y)\right )+\left (i \cos ^{-1}(\mu y)\right )^n \text {Gamma}\left (1-n,i \cos ^{-1}(\mu y)\right )\right )}{\mu }\right )}{2 \lambda }\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+a*arccos(lambda*x)^k*arccos(mu*y)^n*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {1}{ \left ( k+2 \right ) \lambda \, \left ( -2+n \right ) a\mu } \left ( a\sqrt {\arccos \left ( \mu \,y \right ) } \left ( -2+n \right ) {2}^{k}\mu \, \left ( -2\,{\frac {{2}^{-1-k} \left ( k+2 \right ) \LommelS 1 \left ( k+1/2,1/2,\arccos \left ( \lambda \,x \right ) \right ) }{\sqrt {\arccos \left ( \lambda \,x \right ) }}}+{2}^{-k} \left ( \sqrt {\arccos \left ( \lambda \,x \right ) }\LommelS 1 \left ( k+{\frac {3}{2}},{\frac {3}{2}},\arccos \left ( \lambda \,x \right ) \right ) - \left ( \arccos \left ( \lambda \,x \right ) \right ) ^{k+1} \right ) \right ) \sqrt {-{\lambda }^{2}{x}^{2}+1}+2\,\lambda \, \left ( k+2 \right ) \left ( \left ( \left ( -1+n/2 \right ) \LommelS 1 \left ( -n+1/2,1/2,\arccos \left ( \mu \,y \right ) \right ) +1/2\,\arccos \left ( \mu \,y \right ) \LommelS 1 \left ( -n+3/2,3/2,\arccos \left ( \mu \,y \right ) \right ) -1/2\, \left ( \arccos \left ( \mu \,y \right ) \right ) ^{-n+3/2} \right ) \sqrt {-{\mu }^{2}{y}^{2}+1}+ \left ( a{2}^{-1-k}\sqrt {\arccos \left ( \lambda \,x \right ) }\sqrt {\arccos \left ( \mu \,y \right ) }\LommelS 1 \left ( k+1/2,1/2,\arccos \left ( \lambda \,x \right ) \right ) x{2}^{k}-1/2\,\arccos \left ( \mu \,y \right ) y\LommelS 1 \left ( -n+1/2,1/2,\arccos \left ( \mu \,y \right ) \right ) \right ) \left ( -2+n \right ) \mu \right ) \right ) {\frac {1}{\sqrt {\arccos \left ( \mu \,y \right ) }}}} \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( y^2+\lambda (\arccos x)^n y- a^2 + a \lambda ( \arccos x)^n \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda*ArcCos[x]^n*y - a^2 + a*lambda*ArcCos[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( y^2+lambda*arccos(x)^n*y- a^2 + a*lambda*arccos(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{a+y} \left ( \left ( -a-y \right ) \int \!{\frac {1}{ \left ( 2+n \right ) \left ( a+y \right ) } \left ( \left ( -n\lambda \,\arccos \left ( x \right ) \left ( 2+n \right ) \LommelS 1 \left ( -{\frac {1}{2}}+n,{\frac {1}{2}},\arccos \left ( x \right ) \right ) +\lambda \, \left ( 2+n \right ) \LommelS 1 \left ( n+{\frac {1}{2}},{\frac {1}{2}},\arccos \left ( x \right ) \right ) -\arccos \left ( x \right ) \LommelS 1 \left ( n+{\frac {3}{2}},{\frac {3}{2}},\arccos \left ( x \right ) \right ) \lambda + \left ( \arccos \left ( x \right ) \right ) ^{n+{\frac {3}{2}}}\lambda + \left ( \arccos \left ( x \right ) \right ) ^{{\frac {3}{2}}} \left ( 2+n \right ) \left ( a+y \right ) \right ) \sqrt {-{x}^{2}+1}-x \left ( -n \left ( \arccos \left ( x \right ) \right ) ^{2} \left ( 2+n \right ) \LommelS 1 \left ( -{\frac {1}{2}}+n,{\frac {1}{2}},\arccos \left ( x \right ) \right ) +\arccos \left ( x \right ) \left ( 2+n \right ) \LommelS 1 \left ( n+{\frac {1}{2}},{\frac {1}{2}},\arccos \left ( x \right ) \right ) -\LommelS 1 \left ( n+{\frac {3}{2}},{\frac {3}{2}},\arccos \left ( x \right ) \right ) \left ( \arccos \left ( x \right ) \right ) ^{2}+ \left ( \arccos \left ( x \right ) \right ) ^{n+{\frac {5}{2}}} \right ) \lambda \right ) {{\rm e}^{-2\,{\frac {1/2\, \left ( \left ( 2+n \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) -\arccos \left ( x \right ) \LommelS 1 \left ( n+3/2,3/2,\arccos \left ( x \right ) \right ) + \left ( \arccos \left ( x \right ) \right ) ^{n+3/2} \right ) \lambda \,\sqrt {-{x}^{2}+1}+x \left ( -1/2\,\LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) \lambda \,\arccos \left ( x \right ) +a\sqrt {\arccos \left ( x \right ) } \right ) \left ( 2+n \right ) }{ \left ( 2+n \right ) \sqrt {\arccos \left ( x \right ) }}}}}{\frac {1}{\sqrt {-{x}^{2}+1}}} \left ( \arccos \left ( x \right ) \right ) ^{-{\frac {3}{2}}}}\,{\rm d}x-{{\rm e}^{-2\,{\frac {1/2\, \left ( \left ( 2+n \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) -\arccos \left ( x \right ) \LommelS 1 \left ( n+3/2,3/2,\arccos \left ( x \right ) \right ) + \left ( \arccos \left ( x \right ) \right ) ^{n+3/2} \right ) \lambda \,\sqrt {-{x}^{2}+1}+x \left ( -1/2\,\LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) \lambda \,\arccos \left ( x \right ) +a\sqrt {\arccos \left ( x \right ) } \right ) \left ( 2+n \right ) }{ \left ( 2+n \right ) \sqrt {\arccos \left ( x \right ) }}}}} \right ) } \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( y^2+\lambda x (\arccos x)^n y+ \lambda ( \arccos x)^n \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda*x*ArcCos[x]^n*y + a*lambda*ArcCos[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( y^2+lambda*x*arccos(x)^n*y + a*lambda*arccos(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x - \left ( (k+1)x^k y^2 -\lambda (\arccos x)^n (x^{k+1} y-1) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - lambda*ArcCos[x]^n*(x^(k + 1)*y - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)-( (k+1)*x^k*y^2 -lambda*arccos(x)^n*(x^(k+1)*y-1) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{{x}^{k+1}y-1} \left ( -{{\rm e}^{\int \!{\frac {{x}^{k+1} \left ( \arccos \left ( x \right ) \right ) ^{n}\lambda \,x-2\,k-2}{x}}\,{\rm d}x}}{x}^{k+1}+\int \!{\frac {{{\rm e}^{\lambda \,\int \!{x}^{k+1} \left ( \arccos \left ( x \right ) \right ) ^{n}\,{\rm d}x}}}{{x}^{k}{x}^{2}}}\,{\rm d}x \left ( {x}^{k+1}y-1 \right ) \left ( k+1 \right ) \right ) } \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccos x)^n y^2+ a y+ a b - b^2 \lambda (\arccos x)^n \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 + a*y + a*b - b^2*lambda*ArcCos[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( lambda*arccos(x)^n*y^2+ a*y+ a*b - b^2*lambda*arccos(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{b+y} \left ( \left ( -b-y \right ) \int \!{\frac {\lambda }{ \left ( 2+n \right ) \left ( b+y \right ) }{{\rm e}^{{\frac {1}{2+n} \left ( 2\, \left ( \left ( 2+n \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) -\arccos \left ( x \right ) \LommelS 1 \left ( n+3/2,3/2,\arccos \left ( x \right ) \right ) + \left ( \arccos \left ( x \right ) \right ) ^{n+3/2} \right ) \lambda \,b\sqrt {-{x}^{2}+1}+x \left ( 2+n \right ) \left ( -2\,b\lambda \,\arccos \left ( x \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) +a\sqrt {\arccos \left ( x \right ) } \right ) \right ) {\frac {1}{\sqrt {\arccos \left ( x \right ) }}}}}} \left ( \left ( 2\,bn\arccos \left ( x \right ) \left ( 2+n \right ) \LommelS 1 \left ( -1/2+n,1/2,\arccos \left ( x \right ) \right ) -2\,b \left ( 2+n \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) +2\,b\arccos \left ( x \right ) \LommelS 1 \left ( n+3/2,3/2,\arccos \left ( x \right ) \right ) + \left ( \arccos \left ( x \right ) \right ) ^{n+{\frac {3}{2}}} \left ( \left ( b+y \right ) n+2\,y \right ) \right ) \sqrt {-{x}^{2}+1}+2\,bx \left ( -n \left ( \arccos \left ( x \right ) \right ) ^{2} \left ( 2+n \right ) \LommelS 1 \left ( -1/2+n,1/2,\arccos \left ( x \right ) \right ) +\arccos \left ( x \right ) \left ( 2+n \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) -\LommelS 1 \left ( n+3/2,3/2,\arccos \left ( x \right ) \right ) \left ( \arccos \left ( x \right ) \right ) ^{2}+ \left ( \arccos \left ( x \right ) \right ) ^{n+5/2} \right ) \right ) \left ( \arccos \left ( x \right ) \right ) ^{-{\frac {3}{2}}}{\frac {1}{\sqrt {-{x}^{2}+1}}}}\,{\rm d}x-{{\rm e}^{{\frac {1}{2+n} \left ( 2\, \left ( \left ( 2+n \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) -\arccos \left ( x \right ) \LommelS 1 \left ( n+3/2,3/2,\arccos \left ( x \right ) \right ) + \left ( \arccos \left ( x \right ) \right ) ^{n+3/2} \right ) \lambda \,b\sqrt {-{x}^{2}+1}+x \left ( 2+n \right ) \left ( -2\,b\lambda \,\arccos \left ( x \right ) \LommelS 1 \left ( n+1/2,1/2,\arccos \left ( x \right ) \right ) +a\sqrt {\arccos \left ( x \right ) } \right ) \right ) {\frac {1}{\sqrt {\arccos \left ( x \right ) }}}}}} \right ) } \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccos x)^n y^2- b \lambda x^m (\arccos x)^n y + b m x^{m-1} \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 - b*lambda*x^m*ArcCos[x]^n*y + b*m*x^(m - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( lambda*arccos(x)^n*y^2- b*lambda*x^m*arccos(x)^n*y + b*m*x^(m-1) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccos x)^n y^2+ b m x^{m-1} - \lambda b^2 x^{2 m} (\arccos x)^n \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 + b*m*x^(m - 1) - lambda*b^2*x^(2*m)*ArcCos[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( lambda*arccos(x)^n*y^2+ b*m*x^(m-1) - lambda*b^2*x^(2*m)*arccos(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arccos x)^n (y- a x^m-b)^2 + a m x^{m-1} \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcCos[x]^n*(y - a*x^m - b)^2 + a*m*x^(m - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {1}{2} \left (\lambda \left (i \cos ^{-1}(x)\right )^n \cos ^{-1}(x)^n \left (\cos ^{-1}(x)^2\right )^{-n} \text {Gamma}\left (n+1,-i \cos ^{-1}(x)\right )+\lambda \left (-i \cos ^{-1}(x)\right )^n \cos ^{-1}(x)^n \left (\cos ^{-1}(x)^2\right )^{-n} \text {Gamma}\left (n+1,i \cos ^{-1}(x)\right )-\frac {2}{a x^m+b-y}\right )\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( lambda*arccos(x)^n*(y- a*x^m-b)^2 + a*m*x^(m-1) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {1}{ \left ( 2+n \right ) \left ( a{x}^{m}+b-y \right ) } \left ( \lambda \, \left ( \left ( 2+n \right ) \LommelS 1 \left ( n+{\frac {1}{2}},{\frac {1}{2}},\arccos \left ( x \right ) \right ) + \left ( \arccos \left ( x \right ) \right ) ^{n} \left ( \arccos \left ( x \right ) \right ) ^{{\frac {3}{2}}}-\arccos \left ( x \right ) \LommelS 1 \left ( n+{\frac {3}{2}},{\frac {3}{2}},\arccos \left ( x \right ) \right ) \right ) \left ( a{x}^{m}+b-y \right ) \sqrt {-{x}^{2}+1}- \left ( 2+n \right ) \left ( x\lambda \,\arccos \left ( x \right ) \left ( a{x}^{m}+b-y \right ) \LommelS 1 \left ( n+{\frac {1}{2}},{\frac {1}{2}},\arccos \left ( x \right ) \right ) -\sqrt {\arccos \left ( x \right ) } \right ) \right ) {\frac {1}{\sqrt {\arccos \left ( x \right ) }}}} \right ) \]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.2.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x w_x + \left ( \lambda (\arccos x)^n y^2+ k y + \lambda b^2 x^{2 k} (\arccos x)^n \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (lambda*ArcCos[x]^n*y^2 + k*y + lambda*b^2*x^(2*k)*ArcCos[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-k}}{\sqrt {b^2}}\right )-\sqrt {b^2} \int _1^x\lambda \cos ^{-1}(K[1])^n K[1]^{k-1}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := x*diff(w(x,y),x)+( lambda*arccos(x)^n*y^2+ k*y + lambda*b^2*x^(2*k)*arccos(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \lambda \,b\int \!{x}^{k-1} \left ( \arccos \left ( x \right ) \right ) ^{n}\,{\rm d}x-\arctan \left ( {\frac {{x}^{-k}y}{b}} \right ) \right ) \]
____________________________________________________________________________________