Added Feb. 4, 2019.
Problem 2.8.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( a e^{\lambda x} y^2 + a e^{\lambda x} f(x) y+\lambda f(x) \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*Exp[lambda*x]*y^2 + a*Exp[lambda*x]*f[x]*y + lambda*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\lambda \exp \left (-\int _1^{e^{\lambda x}}-\frac {a f\left (\frac {\log (K[5])}{\lambda }\right )}{\lambda }dK[5]-\lambda x\right )}{a y e^{\lambda x}+\lambda }-\int _1^{e^{\lambda x}}\frac {\exp \left (-\int _1^{K[6]}-\frac {a f\left (\frac {\log (K[5])}{\lambda }\right )}{\lambda }dK[5]\right )}{K[6]^2}dK[6]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( a*exp(lambda*x)*y^2 + a*exp(lambda*x)*f(x)*y+lambda*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {\lambda \,{{\rm e}^{\lambda \,x}} \left ( a{{\rm e}^{\lambda \,x}}y+\lambda \right ) }{y\int \!{{\rm e}^{a\int \!f \left ( x \right ) {{\rm e}^{\lambda \,x}}\,{\rm d}x-\lambda \,x}}\,{\rm d}x{{\rm e}^{2\,\lambda \,x}}a+\lambda \,\int \!{{\rm e}^{a\int \!f \left ( x \right ) {{\rm e}^{\lambda \,x}}\,{\rm d}x-\lambda \,x}}\,{\rm d}x{{\rm e}^{\lambda \,x}}+{{\rm e}^{a\int \!f \left ( x \right ) {{\rm e}^{\lambda \,x}}\,{\rm d}x}}}} \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2-a e^{\lambda x} f(x) y+a \lambda e^{\lambda x}\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 - a*Exp[lambda*x]*f[x]*y + a*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2-a*exp(lambda*x)*f(x)*y+a*lambda*exp(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2+a \lambda e^{\lambda x}-a^2 e^{2 \lambda x} f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + a*lambda*Exp[lambda*x] - a^2*Exp[2*lambda*x]*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2+a*lambda*exp(lambda*x)-a^2*exp(2*lambda*x)*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2+\lambda y+ a e^{2 \lambda x} f(x)\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + lambda*y + a*Exp[2*lambda*x]*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y e^{-\lambda x}}{\sqrt {a}}\right )-\sqrt {a} \int _1^xe^{\lambda K[1]} f(K[1])dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*y^2+lambda*y+ a*exp(2*lambda*x)* f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \sqrt {a}\int \!f \left ( x \right ) {{\rm e}^{\lambda \,x}}\,{\rm d}x-\arctan \left ( {{{\rm e}^{-\lambda \,x}}y{\frac {1}{\sqrt {a}}}} \right ) \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left ( f(x) y^2-(a e^{\lambda x}+b) f(x) y+a \lambda e^{\lambda x}\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 - (a*Exp[lambda*x] + b)*f[x]*y + a*lambda*Exp[lambda*x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2-(a*exp(lambda*x)+b)*f(x)*y+a *lambda*exp(lambda*x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.2.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left (e^{\lambda x} f(x) y^2+(a f(x)-\lambda ) y+b e^{-\lambda x} f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (Exp[lambda*x]*f[x]*y^2 + (a*f[x] - lambda)*y + b*Exp[-(lambda*x)]*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( exp(lambda*x)*f(x)*y^2+(a*f(x)-lambda)*y+b*exp(-lambda*x)*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -2\,{\frac {a}{\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }} \left ( a\arctanh \left ( {\frac {a \left ( 2\,y{{\rm e}^{\lambda \,x}}+a \right ) }{\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }}} \right ) +1/2\,\sqrt {{a}^{2} \left ( {a}^{2}-4\,b \right ) }\int \!f \left ( x \right ) \,{\rm d}x \right ) } \right ) \]
____________________________________________________________________________________
Added Feb. 4, 2019.
Problem 2.8.2.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x + \left (f(x) y^2+ g(x) y+a \lambda e^{\lambda x} -a e^{\lambda x} g(x) -a^2 e^{2 \lambda x} f(x)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + g[x]*y + a*lambda*Exp[lambda*x] - a*Exp[lambda*x]*g[x] - a^2*Exp[2*lambda*x]*f[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2+ g(x)*y+a*lambda*exp(lambda*x) -a*exp(lambda*x)*g(x)-a^2*exp(2*lambda*x)*f(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.2.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left (f(x) y^2- a e^{\lambda x} g(x) y + a \lambda e^{\lambda x} +a^2 e^{2 \lambda x} (g(x)-f(x))\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 - a*Exp[lambda*x]*g[x]*y + a*lambda*Exp[lambda*x] + a^2*Exp[2*lambda*x]*(g[x] - f[x]))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2- a*exp(lambda*x)*g(x)*y + a*lambda*exp(lambda*x) +a^2*exp(2*lambda*x)* (g(x)-f(x)))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.2.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left (f(x) y^2+2 a \lambda x e^{\lambda x^2} - a^2 f(x) e^{2 \lambda x^2} \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + 2*a*lambda*x*Exp[lambda*x^2] - a^2*f[x]*Exp[2*lambda*x^2])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+( f(x)*y^2+2*a*lambda*x*exp(lambda*x^2) - a^2*f(x)*exp(2*lambda*x^2))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left (f(x) y^2+2 \lambda x y+ a f(x) e^{2 \lambda x^2} \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*y^2 + 2*lambda*x*y + a*f[x]*Exp[2*lambda*x^2])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}, Assumptions -> a > 0], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y e^{-\lambda x^2}}{\sqrt {a}}\right )-\sqrt {a} \int _1^xe^{\lambda K[1]^2} f(K[1])dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*y^2+2*lambda*x*y+ a*f(x)*exp(2*lambda*x^2))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) assuming a>0 ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( \sqrt {a}\int \!f \left ( x \right ) {{\rm e}^{{x}^{2}\lambda }}\,{\rm d}x-\arctan \left ( {{{\rm e}^{-{x}^{2}\lambda }}y{\frac {1}{\sqrt {a}}}} \right ) \right ) \]
____________________________________________________________________________________
Added Feb. 7, 2019.
Problem 2.8.2.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left (f(x) e^{\lambda y} + g(x) \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (f[x]*Exp[lambda*y] + g[x])*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+( f(x)*exp(lambda*y) + g(x))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-\lambda \,\int \!f \left ( x \right ) {{\rm e}^{\lambda \,\int \!g \left ( x \right ) \,{\rm d}x}}\,{\rm d}x-{{\rm e}^{-\lambda \, \left ( y-\int \!g \left ( x \right ) \,{\rm d}x \right ) }}}{\lambda }} \right ) \]
____________________________________________________________________________________