Added Feb. 11, 2019.
Problem Chapter 3.4.5.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = c \sinh (\lambda x) + k \cosh (\mu y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Sinh[lambda*x] + k*Cosh[mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )+\frac {c \cosh (\lambda x)}{a \lambda }+\frac {k \sinh (\mu y)}{b \mu }\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) = c*sinh(lambda*x)+ k*cosh(mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\frac {1}{\mu \,ba\lambda } \left ( {\it \_F1} \left ( {\frac {ya-xb}{a}} \right ) \mu \,ba\lambda +ka\sinh \left ( \mu \,y \right ) \lambda +\cosh \left ( x\lambda \right ) c\mu \,b \right ) }\]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.4.5.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = \tanh (\lambda x) + k \coth (\mu y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == Tanh[lambda*x] + k*Coth[mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )+\frac {\log (\cosh (\lambda x))}{a \lambda }+\frac {k (\log (\tanh (\mu y))+\log (\cosh (\mu y)))}{b \mu }\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) = tanh(lambda*x)+ k*coth(mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\frac {\ln \left ( \cosh \left ( x\lambda \right ) \right ) }{a\lambda }}+{\frac {k\ln \left ( \sinh \left ( \mu \,y \right ) \right ) }{\mu \,b}}+{\it \_F1} \left ( {\frac {ya-xb}{a}} \right ) \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.4.5.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b w_y = \sinh (\lambda x) + k \tanh (\mu y) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == Sinh[lambda*x] + k*Tanh[mu*y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )+\frac {\cosh (\lambda x)}{a \lambda }+\frac {k \log (\cosh (\mu y))}{b \mu }\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) = sinh(lambda*x)+ k*tanh(mu*y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\frac {k\ln \left ( \cosh \left ( \mu \,y \right ) \right ) }{\mu \,b}}+{\frac {\cosh \left ( x\lambda \right ) }{a\lambda }}+{\it \_F1} \left ( {\frac {ya-xb}{a}} \right ) \]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.4.5.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \cosh (\mu y)w_y = \sinh (\lambda x) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Cosh[mu*y]*D[w[x, y], y] == Sinh[lambda*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {\cosh (\lambda x)}{a \lambda }+c_1\left (\frac {2 \tan ^{-1}\left (\tanh \left (\frac {\mu y}{2}\right )\right )}{\mu }-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*cosh(mu*y)*diff(w(x,y),y) = sinh(lambda*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\frac {1}{a\lambda } \left ( {\it \_F1} \left ( {\frac {-b\mu \,x+2\,\arctan \left ( {{\rm e}^{\mu \,y}} \right ) a}{\mu \,b}} \right ) a\lambda +\cosh \left ( x\lambda \right ) \right ) }\]
____________________________________________________________________________________
Added Feb. 11, 2019.
Problem Chapter 3.4.5.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a w_x + b \sinh (\mu y)w_y = \cosh (\lambda x) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*Sinh[mu*y]*D[w[x, y], y] == Cosh[lambda*x]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to \frac {\sinh (\lambda x)}{a \lambda }+c_1\left (\frac {\log \left (\tanh \left (\frac {\mu y}{2}\right )\right )}{\mu }-\frac {b x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde :=a*diff(w(x,y),x) + b*sinh(mu*y)*diff(w(x,y),y) = cosh(lambda*x); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
\[w \left ( x,y \right ) ={\frac {1}{a\lambda } \left ( {\it \_F1} \left ( {\frac {-b\mu \,x-2\,\arctanh \left ( {{\rm e}^{\mu \,y}} \right ) a}{\mu \,b}} \right ) a\lambda +\sinh \left ( x\lambda \right ) \right ) }\]
____________________________________________________________________________________