Added Feb. 23, 2019.
Problem Chapter 4.3.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a w_x + b w_y = c e^{\alpha x+ \beta y} w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == c*Exp[alpha*x + beta*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{\frac {c e^{\alpha x+\beta y}}{a \alpha +b \beta }}\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = c*exp(alpha*x+beta*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ay-xb}{a}} \right ) {{\rm e}^{{\frac {c{{\rm e}^{\alpha \,x+\beta \,y}}}{a\alpha +\beta \,b}}}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a w_x + b w_y = (c e^{\lambda x}+ k e^{\mu y}) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y], x] + b*D[w[x, y], y] == (c*Exp[lambda*x] + k*Exp[mu*y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right ) e^{\frac {c e^{\lambda x}}{a \lambda }+\frac {k e^{\mu y}}{b \mu }}\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y),x)+b*diff(w(x,y),y) = (c*exp(lambda*x)+k*exp(mu*y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {ay-xb}{a}} \right ) {{\rm e}^{{\frac {ak\lambda \,{{\rm e}^{\mu \,y}}+c{{\rm e}^{x\lambda }}\mu \,b}{a\lambda \,\mu \,b}}}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a e^{\lambda x} w_x + b e^{\beta y} w_y = c w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*x]*D[w[x, y], x] + b*Exp[beta*y]*D[w[x, y], y] == c*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{-\frac {c e^{-\lambda x}}{a \lambda }} c_1\left (\frac {b e^{-\lambda x}}{a \lambda }-\frac {e^{-\beta y}}{\beta }\right )\right \}\right \}\]
Maple ✓
restart; pde := a*exp(lambda*x)*diff(w(x,y),x)+b*exp(beta*y)*diff(w(x,y),y) = c*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( {{\rm e}^{\beta \,y}}\beta \,b-a\lambda \,{{\rm e}^{x\lambda }} \right ) {{\rm e}^{-\beta \,y-x\lambda }}}{b\beta \,\lambda }} \right ) {{\rm e}^{-{\frac {c{{\rm e}^{-x\lambda }}}{a\lambda }}}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a e^{\lambda y} w_x + b e^{\beta x} w_y = c w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*y]*D[w[x, y], x] + b*Exp[beta*x]*D[w[x, y], y] == c*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {e^{\lambda y}}{\lambda }-\frac {b e^{\beta x}}{a \beta }\right ) \exp \left (\frac {c \left (\beta x-\log \left (\frac {a \beta e^{\lambda y}}{\lambda }\right )\right )}{a \beta e^{\lambda y}-b \lambda e^{\beta x}}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*exp(lambda*y)*diff(w(x,y),x)+b*exp(beta*x)*diff(w(x,y),y) = c*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {{{\rm e}^{\lambda \,y}}a\beta -{{\rm e}^{\beta \,x}}b\lambda }{b\beta \,\lambda }} \right ) \left ( {{\rm e}^{\beta \,x}} \right ) ^{{\frac {c}{{{\rm e}^{\lambda \,y}}a\beta -{{\rm e}^{\beta \,x}}b\lambda }}} \left ( {\frac {{{\rm e}^{\lambda \,y}}a\beta }{b\lambda }} \right ) ^{{\frac {c}{{{\rm e}^{\beta \,x}}b\lambda -{{\rm e}^{\lambda \,y}}a\beta }}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ a e^{\lambda x} w_x + b e^{\beta x} w_y = c e^{\gamma y} w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*x]*D[w[x, y], x] + b*Exp[beta*x]*D[w[x, y], y] == c*Exp[gamma*y]*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {b e^{x (\beta -\lambda )}}{a (\lambda -\beta )}+y\right ) \exp \left (\int _1^x\frac {c \exp \left (y \gamma -\frac {b \left (e^{(\beta -\lambda ) x}-e^{(\beta -\lambda ) K[1]}\right ) \gamma }{a (\beta -\lambda )}-\lambda K[1]\right )}{a}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*exp(lambda*x)*diff(w(x,y),x)+b*exp(beta*x)*diff(w(x,y),y) = c*exp(gamma*y)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-b{{\rm e}^{x \left ( \beta -\lambda \right ) }}+ay \left ( \beta -\lambda \right ) }{ \left ( \beta -\lambda \right ) a}} \right ) {{\rm e}^{\int ^{x}\!{\frac {c}{a}{{\rm e}^{{\frac {-\gamma \,{{\rm e}^{x \left ( \beta -\lambda \right ) }}b+\gamma \,{{\rm e}^{{\it \_a}\, \left ( \beta -\lambda \right ) }}b+a \left ( \beta -\lambda \right ) \left ( -{\it \_a}\,\lambda +\gamma \,y \right ) }{ \left ( \beta -\lambda \right ) a}}}}}{d{\it \_a}}}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a e^{\lambda x} w_x + b e^{\beta y} w_y = (c e^{\gamma y} + s e^{\delta y} ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*x]*D[w[x, y], x] + b*Exp[beta*y]*D[w[x, y], y] == (c*Exp[gamma*y] + s*Exp[delta*y])*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {b e^{-\lambda x}}{a \lambda }-\frac {e^{-\beta y}}{\beta }\right ) \exp \left (-\frac {e^{-\lambda x} \left (e^{-\beta y}\right )^{-\frac {\delta +\gamma }{\beta }} \left ((\beta -\delta ) \left (c \gamma \left (e^{-\beta y}\right )^{\frac {\delta }{\beta }} \left (\frac {a \lambda e^{\lambda x-\beta y}}{b \beta }\right )^{\frac {\gamma }{\beta }} \, _2F_1\left (\frac {\beta +\gamma }{\beta },\frac {\gamma }{\beta }-1;\frac {\gamma }{\beta };1-\frac {a e^{\lambda x-\beta y} \lambda }{b \beta }\right )+(\beta -\gamma ) \left (c \left (e^{-\beta y}\right )^{\frac {\delta }{\beta }}+s \left (e^{-\beta y}\right )^{\frac {\gamma }{\beta }}\right )\right )+\delta s (\beta -\gamma ) \left (e^{-\beta y}\right )^{\frac {\gamma }{\beta }} \left (\frac {a \lambda e^{\lambda x-\beta y}}{b \beta }\right )^{\frac {\delta }{\beta }} \, _2F_1\left (\frac {\beta +\delta }{\beta },\frac {\delta }{\beta }-1;\frac {\delta }{\beta };1-\frac {a e^{\lambda x-\beta y} \lambda }{b \beta }\right )\right )}{a \lambda (\beta -\delta ) (\beta -\gamma )}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*exp(lambda*x)*diff(w(x,y),x)+b*exp(beta*y)*diff(w(x,y),y) = (c*exp(gamma*y)+s*exp(delta*y))*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac { \left ( {{\rm e}^{\beta \,y}}\beta \,b-a\lambda \,{{\rm e}^{x\lambda }} \right ) {{\rm e}^{-\beta \,y-x\lambda }}}{b\beta \,\lambda }} \right ) {{\rm e}^{-{\frac { \left ( a\lambda \,{{\rm e}^{x\lambda }}-{{\rm e}^{\beta \,y}}\beta \,b \right ) {{\rm e}^{-\beta \,y-x\lambda }}+{{\rm e}^{-x\lambda }}\beta \,b}{ba \left ( -\gamma +\beta \right ) \lambda \, \left ( \beta -\delta \right ) } \left ( s \left ( -\gamma +\beta \right ) \left ( {\frac {a\lambda }{ \left ( a\lambda \,{{\rm e}^{x\lambda }}-{{\rm e}^{\beta \,y}}\beta \,b \right ) {{\rm e}^{-\beta \,y-x\lambda }}+{{\rm e}^{-x\lambda }}\beta \,b}} \right ) ^{{\frac {\delta }{\beta }}}+ \left ( {\frac {a\lambda }{ \left ( a\lambda \,{{\rm e}^{x\lambda }}-{{\rm e}^{\beta \,y}}\beta \,b \right ) {{\rm e}^{-\beta \,y-x\lambda }}+{{\rm e}^{-x\lambda }}\beta \,b}} \right ) ^{{\frac {\gamma }{\beta }}}c \left ( \beta -\delta \right ) \right ) }}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a e^{\beta x} w_x + (b e^{\gamma x}+c e^{\lambda y} ) w_y = (s e^{\mu x} + k e^{\delta y} + p ) w \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*Exp[beta*x]*D[w[x, y], x] + (b*Exp[gamma*x] + c*Exp[lambda*y])*D[w[x, y], y] == (s*Exp[mu*x] + k*Exp[delta*y] + p)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := a*exp(beta*x)*diff(w(x,y),x)+(b*exp(gamma*x)+c*exp(lambda*y))*diff(w(x,y),y) = (s*exp(mu*x) + k*exp(delta*y) + p)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( \left ( {\frac {1}{a} \left ( a\int \!{\frac {c}{a}{{\rm e}^{{\frac {-\lambda \,b{{\rm e}^{x \left ( \gamma -\beta \right ) }}-ax\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}}\,{\rm d}x\lambda -c\int \!{{\rm e}^{{\frac {-\lambda \,b{{\rm e}^{{\it \_b}\, \left ( \gamma -\beta \right ) }}-a{\it \_b}\,\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}\,{\rm d}{\it \_b}\lambda +a{{\rm e}^{-{\frac { \left ( b{{\rm e}^{x \left ( \gamma -\beta \right ) }}+ay \left ( -\gamma +\beta \right ) \right ) \lambda }{a \left ( -\gamma +\beta \right ) }}}} \right ) } \right ) ^{-{\frac {\delta }{\lambda }}}k{{\rm e}^{{\frac {-\delta \,b{{\rm e}^{{\it \_b}\, \left ( \gamma -\beta \right ) }}-a{\it \_b}\,\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}+{{\rm e}^{-\beta \,{\it \_b}}}p+s{{\rm e}^{{\it \_b}\, \left ( -\beta +\mu \right ) }} \right ) }{d{\it \_b}}}}{\it \_F1} \left ( {\frac {1}{\lambda } \left ( -\lambda \,\int \!{\frac {c}{a}{{\rm e}^{{\frac {-\lambda \,b{{\rm e}^{x \left ( \gamma -\beta \right ) }}-ax\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}}\,{\rm d}x-{{\rm e}^{-{\frac { \left ( b{{\rm e}^{x \left ( \gamma -\beta \right ) }}+ay \left ( -\gamma +\beta \right ) \right ) \lambda }{a \left ( -\gamma +\beta \right ) }}}} \right ) } \right ) \]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a e^{\beta x} w_x + (b e^{\gamma x}+c e^{\lambda y} ) w_y = (s e^{\mu x+\delta y} + k ) w \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*Exp[beta*x]*D[w[x, y], x] + (b*Exp[gamma*x] + c*Exp[lambda*y])*D[w[x, y], y] == (s*Exp[mu*x + delta*y] + k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := a*exp(beta*x)*diff(w(x,y),x)+(b*exp(gamma*x)+c*exp(lambda*y))*diff(w(x,y),y) = (s*exp(mu*x+delta*y) + k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {1}{\lambda } \left ( -\lambda \,\int \!{\frac {c}{a}{{\rm e}^{{\frac {-\lambda \,b{{\rm e}^{x \left ( \gamma -\beta \right ) }}-ax\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}}\,{\rm d}x-{{\rm e}^{-{\frac { \left ( b{{\rm e}^{x \left ( \gamma -\beta \right ) }}+ay \left ( -\gamma +\beta \right ) \right ) \lambda }{a \left ( -\gamma +\beta \right ) }}}} \right ) } \right ) {{\rm e}^{\int ^{x}\!{\frac {1}{a} \left ( \left ( {\frac {1}{a} \left ( a\int \!{\frac {c}{a}{{\rm e}^{{\frac {-\lambda \,b{{\rm e}^{x \left ( \gamma -\beta \right ) }}-ax\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}}\,{\rm d}x\lambda -c\int \!{{\rm e}^{{\frac {-\lambda \,b{{\rm e}^{{\it \_b}\, \left ( \gamma -\beta \right ) }}-a{\it \_b}\,\beta \, \left ( -\gamma +\beta \right ) }{a \left ( -\gamma +\beta \right ) }}}}\,{\rm d}{\it \_b}\lambda +a{{\rm e}^{-{\frac { \left ( b{{\rm e}^{x \left ( \gamma -\beta \right ) }}+ay \left ( -\gamma +\beta \right ) \right ) \lambda }{a \left ( -\gamma +\beta \right ) }}}} \right ) } \right ) ^{-{\frac {\delta }{\lambda }}}s{{\rm e}^{{\frac {-\delta \,b{{\rm e}^{{\it \_b}\, \left ( \gamma -\beta \right ) }}+a{\it \_b}\, \left ( -\gamma +\beta \right ) \left ( -\beta +\mu \right ) }{a \left ( -\gamma +\beta \right ) }}}}+{{\rm e}^{-\beta \,{\it \_b}}}k \right ) }{d{\it \_b}}}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a e^{\beta x} w_x + b e^{\gamma x+\lambda y} w_y = (c e^{\mu x+\delta y} + k ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[beta*x]*D[w[x, y], x] + (b*Exp[gamma*x + lambda*y])*D[w[x, y], y] == (c*Exp[mu*x + delta*y] + k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {b e^{\gamma x-\beta x}}{a \beta -a \gamma }-\frac {e^{-\lambda y}}{\lambda }\right ) \exp \left (\frac {c (\gamma -\beta ) \left (e^{\lambda y}\right )^{\delta /\lambda } e^{-\gamma x-\lambda y+\mu x} \, _2F_1\left (1,\frac {\mu -\gamma }{\beta -\gamma };\frac {\beta \delta -\gamma \delta -\gamma \lambda +\lambda \mu }{\beta \lambda -\gamma \lambda };1-\frac {a e^{\beta x-\gamma x-\lambda y} (\beta -\gamma )}{b \lambda }\right )}{b (\beta (\lambda -\delta )+\delta \gamma -\lambda \mu )}-\frac {k e^{-\beta x}}{a \beta }\right )\right \}\right \}\]
Maple ✓
restart; pde := a*exp(beta*x)*diff(w(x,y),x)+(b*exp(gamma*x+lambda*y))*diff(w(x,y),y) = (c*exp(mu*x+delta*y) + k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( -{\frac {{{\rm e}^{-\lambda \,y}} \left ( -b\lambda \,{{\rm e}^{x \left ( \gamma -\beta \right ) +\lambda \,y}}+a \left ( -\gamma +\beta \right ) \right ) }{b\lambda \, \left ( -\gamma +\beta \right ) }} \right ) {{\rm e}^{\int ^{x}\!{\frac {{{\rm e}^{-\beta \,{\it \_a}}}}{a} \left ( c \left ( {\frac {a \left ( -\gamma +\beta \right ) }{-b\lambda \,{{\rm e}^{-\lambda \,y}}{{\rm e}^{x \left ( \gamma -\beta \right ) +\lambda \,y}}+\lambda \,b{{\rm e}^{{\it \_a}\, \left ( \gamma -\beta \right ) }}+{{\rm e}^{-\lambda \,y}}a \left ( -\gamma +\beta \right ) }} \right ) ^{{\frac {\delta }{\lambda }}}{{\rm e}^{\mu \,{\it \_a}}}+k \right ) }{d{\it \_a}}}}\]
____________________________________________________________________________________
Added Feb. 23, 2019.
Problem Chapter 4.3.1.10, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ a e^{\lambda y} w_x + b e^{\beta x} w_y = (c e^{\mu x} + k ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*Exp[lambda*x]*D[w[x, y], x] + b*Exp[beta*x]*D[w[x, y], y] == (c*Exp[mu*x] + k)*w[x, y]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to e^{-\frac {\frac {c e^{x (\mu -\lambda )}}{\lambda -\mu }+\frac {k e^{-\lambda x}}{\lambda }}{a}} c_1\left (\frac {b e^{x (\beta -\lambda )}}{a (\lambda -\beta )}+y\right )\right \}\right \}\]
Maple ✓
restart; pde := a*exp(lambda*x)*diff(w(x,y),x)+b*exp(beta*x)*diff(w(x,y),y) = (c*exp(mu*x) + k)*w(x,y); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left ( x,y \right ) ={\it \_F1} \left ( {\frac {-b{{\rm e}^{x \left ( \beta -\lambda \right ) }}+ay \left ( \beta -\lambda \right ) }{ \left ( \beta -\lambda \right ) a}} \right ) {{\rm e}^{{\frac {c{{\rm e}^{x \left ( -\lambda +\mu \right ) }}\lambda -k{{\rm e}^{-x\lambda }} \left ( -\lambda +\mu \right ) }{a\lambda \, \left ( -\lambda +\mu \right ) }}}}\]
____________________________________________________________________________________