6.5.1 2.1

6.5.1.1 [1196] Problem 1
6.5.1.2 [1197] Problem 2
6.5.1.3 [1198] Problem 3
6.5.1.4 [1199] Problem 4
6.5.1.5 [1200] Problem 5
6.5.1.6 [1201] Problem 6
6.5.1.7 [1202] Problem 7
6.5.1.8 [1203] Problem 8

6.5.1.1 [1196] Problem 1

problem number 1196

Added March 10, 2019.

Problem Chapter 5.2.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c w + d \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*w[x, y] + d; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to -\frac {d}{c}+e^{\frac {c x}{a}} c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y),x)+b*diff(w(x,y),y) = c*w(x,y)+d; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\frac {1}{c} \left ( {{\rm e}^{{\frac {cx}{a}}}}{\it \_F1} \left ( {\frac {ay-xb}{a}} \right ) c-d \right ) }\]

____________________________________________________________________________________

6.5.1.2 [1197] Problem 2

problem number 1197

Added March 10, 2019.

Problem Chapter 5.2.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (x-a) w_x + (y-b) w_y = w - c \]

Mathematica

ClearAll["Global`*"]; 
pde =  (x - a)*D[w[x, y], x] + (y - b)*D[w[x, y], y] == w[x, y] - c; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c+(x-a) c_1\left (\frac {b-y}{a-x}\right )\right \}\right \}\]

Maple

restart; 
pde :=  (x-a)*diff(w(x,y),x)+(y-b)*diff(w(x,y),y) = w(x,y)-c; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) = \left ( -x+a \right ) {\it \_F1} \left ( {\frac {y-b}{-x+a}} \right ) +c\]

____________________________________________________________________________________

6.5.1.3 [1198] Problem 3

problem number 1198

Added March 10, 2019.

Problem Chapter 5.2.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x+b) w_x + (c x+d) w_y = \alpha w + \beta \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x + b)*D[w[x, y], x] + (c*x + d)*D[w[x, y], y] == alpha*w[x, y] + beta; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to -\frac {\beta }{\alpha }+(a x+b)^{\frac {\alpha }{a}} c_1\left (\frac {(b c-a d) \log (a x+b)+a (a y-c x)}{a^2}\right )\right \}\right \}\]

Maple

restart; 
pde :=  (a*x+b)*diff(w(x,y),x)+ (c*x+d)*diff(w(x,y),y) =  alpha*w(x,y)+beta; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\frac {1}{\alpha } \left ( \left ( ax+b \right ) ^{{\frac {\alpha }{a}}}{\it \_F1} \left ( {\frac {y{a}^{2}-\ln \left ( ax+b \right ) da+\ln \left ( ax+b \right ) cb-cxa}{{a}^{2}}} \right ) \alpha -\beta \right ) }\]

____________________________________________________________________________________

6.5.1.4 [1199] Problem 4

problem number 1199

Added March 10, 2019.

Problem Chapter 5.2.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x+b) w_x + (c y+d) w_y = \alpha w + \beta \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x + b)*D[w[x, y], x] + (c*y + d)*D[w[x, y], y] == alpha*w[x, y] + beta; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to -\frac {\beta }{\alpha }+(a x+b)^{\frac {\alpha }{a}} c_1\left (\frac {(c y+d) (a x+b)^{-\frac {c}{a}}}{c}\right )\right \}\right \}\]

Maple

restart; 
pde :=  (a*x+b)*diff(w(x,y),x)+ (c*y+d)*diff(w(x,y),y) =  alpha*w(x,y)+beta; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\frac {1}{\alpha } \left ( \left ( ax+b \right ) ^{{\frac {\alpha }{a}}}{\it \_F1} \left ( {\frac {cy+d}{c} \left ( ax+b \right ) ^{-{\frac {c}{a}}}} \right ) \alpha -\beta \right ) }\]

____________________________________________________________________________________

6.5.1.5 [1200] Problem 5

problem number 1200

Added March 10, 2019.

Problem Chapter 5.2.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x+b) w_x + (c y+d) w_y = \alpha w + \beta y+\gamma x \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x + b)*D[w[x, y], x] + (c*y + d)*D[w[x, y], y] == alpha*w[x, y] + beta*y + gamma*x; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to -\frac {\alpha (a-\alpha ) (\alpha -c) (a x+b)^{\frac {\alpha }{a}} c_1\left (\frac {(c y+d) (a x+b)^{-\frac {c}{a}}}{c}\right )-a \beta (\alpha y+d)+\alpha ^2 \beta y+\alpha ^2 \gamma x+\alpha b \gamma +\alpha \beta d-\alpha c \gamma x-b c \gamma }{\alpha (\alpha -a) (\alpha -c)}\right \}\right \}\]

Maple

restart; 
pde :=  (a*x+b)*diff(w(x,y),x)+ (c*y+d)*diff(w(x,y),y) =  alpha*w(x,y)+beta*y+gamma*x; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\frac {1}{ \left ( a-\alpha \right ) \alpha \, \left ( -\alpha +c \right ) } \left ( \left ( ax+b \right ) ^{{\frac {\alpha }{a}}}\alpha \, \left ( -\alpha +c \right ) \left ( a-\alpha \right ) {\it \_F1} \left ( {\frac {cy+d}{c} \left ( ax+b \right ) ^{-{\frac {c}{a}}}} \right ) + \left ( -\beta \,y-\gamma \,x \right ) {\alpha }^{2}+ \left ( ya\beta +\gamma \,xc-b\gamma -\beta \,d \right ) \alpha +a\beta \,d+bc\gamma \right ) }\]

____________________________________________________________________________________

6.5.1.6 [1201] Problem 6

problem number 1201

Added March 10, 2019.

Problem Chapter 5.2.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a x+b) w_x + (c x+d y) w_y = \alpha w + \beta \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a*x + b)*D[w[x, y], x] + (c*x + d*y)*D[w[x, y], y] == alpha*w[x, y] + beta; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to -\frac {\beta }{\alpha }+(a x+b)^{\frac {\alpha }{a}} c_1\left (\frac {(a x+b)^{-\frac {d}{a}} (-d (-a y+c x+d y)-b c)}{d (a-d)}\right )\right \}\right \}\]

Maple

restart; 
pde :=  (a*x+b)*diff(w(x,y),x)+ (c*x+d*y)*diff(w(x,y),y) =  alpha*w(x,y)+beta; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) ={\frac {1}{\alpha } \left ( \left ( ax+b \right ) ^{{\frac {\alpha }{a}}}{\it \_F1} \left ( {\frac {dya-cxd-{d}^{2}y-cb}{ \left ( a-d \right ) d} \left ( ax+b \right ) ^{-{\frac {d}{a}}}} \right ) \alpha -\beta \right ) }\]

____________________________________________________________________________________

6.5.1.7 [1202] Problem 7

problem number 1202

Added March 10, 2019.

Problem Chapter 5.2.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ (a_1 x+a_0) w_x + (b_2 y+b_1 x+b_0) w_y = (c_2 y+c_1 x+c_0) w + k_2 y+k_1 x+k_0 \]

Mathematica

ClearAll["Global`*"]; 
pde = (a1*x + a0)*D[w[x, y], x] + (b2*y + b1*x + b0)*D[w[x, y], y] == (c2*y + c1*x + c0)*w[x, y] + k2*y + k1*x + k0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to (\text {a0}+\text {a1} x)^{\frac {\text {a0} \text {b1} \text {c2}-\text {a0} \text {b2} \text {c1}-\text {a1} \text {b0} \text {c2}+\text {a1} \text {b2} \text {c0}}{\text {a1}^2 \text {b2}}} \exp \left (\frac {-\text {a1} (\text {a0} \text {b1} \text {c2}+\text {b2} (\text {b0} \text {c2}+\text {b1} \text {c2} x-\text {b2} \text {c1} x+\text {b2} \text {c2} y))+\text {a1}^2 \text {c2} (\text {b0}+\text {b2} y)+\text {b2}^2 x (\text {b1} \text {c2}-\text {b2} \text {c1})}{\text {a1} \text {b2}^2 (\text {a1}-\text {b2})}\right ) \left (\int _1^x\frac {\exp \left (-\frac {\frac {(\text {a1} \text {c1}-\text {b2} \text {c1}+\text {b1} \text {c2}) K[1]}{\text {a1}}-\frac {\text {c2} (\text {a0}+\text {a1} x)^{-\frac {\text {b2}}{\text {a1}}} (\text {a0} \text {b1}-\text {a1} (\text {b0}+\text {b2} y)+\text {b2} (\text {b0}+\text {b1} x+\text {b2} y)) (\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}}{\text {b2}^2}}{\text {a1}-\text {b2}}\right ) (\text {a0}+\text {a1} x)^{-\frac {\text {b2}}{\text {a1}}} (\text {a0}+\text {a1} K[1])^{\frac {-\text {a1} \text {b2} \text {c0}+\text {a0} \text {b2} \text {c1}+\text {a1} \text {b0} \text {c2}-\text {a0} \text {b1} \text {c2}}{\text {a1}^2 \text {b2}}-1} \left (-\left (\text {k0} (\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}+\text {k1} K[1] (\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}+\text {k2} y (\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}\right ) \text {b2}^2+\text {a1} \left (\text {k0} (\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}+\text {k1} K[1] (\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}+\text {k2} y (\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}\right ) \text {b2}+\text {k2} \left (\text {b1} K[1] (\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}-\text {b1} x (\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}+\text {b0} \left ((\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}-(\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}\right )\right ) \text {b2}+\text {a0} \text {b1} \text {k2} \left ((\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}-(\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}\right )+\text {a1} \text {b0} \text {k2} \left ((\text {a0}+\text {a1} K[1])^{\frac {\text {b2}}{\text {a1}}}-(\text {a0}+\text {a1} x)^{\frac {\text {b2}}{\text {a1}}}\right )\right )}{(\text {a1}-\text {b2}) \text {b2}}dK[1]+c_1\left (\frac {(\text {a0}+\text {a1} x)^{-\frac {\text {b2}}{\text {a1}}} (-\text {a0} \text {b1}+\text {a1} (\text {b0}+\text {b2} y)-\text {b2} (\text {b0}+\text {b1} x+\text {b2} y))}{\text {b2} (\text {a1}-\text {b2})}\right )\right )\right \}\right \}\]

Maple

restart; 
pde :=  (a1*x+a0)*diff(w(x,y),x)+ (b2*y+b1*x+b0)*diff(w(x,y),y) =  (c2*y+c1*x+c0)*w(x,y)+k2*y+k1*x+k0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

time expired

____________________________________________________________________________________

6.5.1.8 [1203] Problem 8

problem number 1203

Added March 10, 2019.

Problem Chapter 5.2.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a y w_x + (b_1 x+b_0) w_y = (c_1 x+c_0) w + s_1 x+s0 \]

Mathematica

ClearAll["Global`*"]; 
pde = a*y*D[w[x, y], x] + (b1*x + b0)*D[w[x, y], y] == (c1*x + c0)*w[x, y] + s1*x + s0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\begin {align*} & \left \{w(x,y)\to \exp \left (\frac {(\text {b0} \text {c1}-\text {b1} \text {c0}) \tanh ^{-1}\left (\frac {\text {b0}+\text {b1} x}{\sqrt {\text {b1}} \sqrt {a y^2}}\right )-\sqrt {\text {b1}} \text {c1} \sqrt {a y^2}}{\sqrt {a} \text {b1}^{3/2}}\right ) \left (\int _1^x-\frac {\exp \left (\frac {\frac {\sqrt {-\text {b1} x^2-2 \text {b0} x+a y^2+\text {b1} K[1]^2+2 \text {b0} K[1]} \text {c1}}{\text {b1}}+\frac {(\text {b1} \text {c0}-\text {b0} \text {c1}) \tanh ^{-1}\left (\frac {\text {b0}+\text {b1} K[1]}{\sqrt {\text {b1}} \sqrt {-\text {b1} x^2-2 \text {b0} x+a y^2+\text {b1} K[1]^2+2 \text {b0} K[1]}}\right )}{\text {b1}^{3/2}}}{\sqrt {a}}\right ) (\text {s0}+\text {s1} K[1])}{\sqrt {a} \sqrt {-\text {b1} x^2-2 \text {b0} x+a y^2+\text {b1} K[1]^2+2 \text {b0} K[1]}}dK[1]+c_1\left (-\frac {-a y^2+2 \text {b0} x+\text {b1} x^2}{2 a}\right )\right )\right \}\\& \left \{w(x,y)\to \exp \left (\frac {(\text {b1} \text {c0}-\text {b0} \text {c1}) \tanh ^{-1}\left (\frac {\text {b0}+\text {b1} x}{\sqrt {\text {b1}} \sqrt {a y^2}}\right )+\sqrt {\text {b1}} \text {c1} \sqrt {a y^2}}{\sqrt {a} \text {b1}^{3/2}}\right ) \left (\int _1^x\frac {\exp \left (-\frac {\frac {\sqrt {-\text {b1} x^2-2 \text {b0} x+a y^2+\text {b1} K[2]^2+2 \text {b0} K[2]} \text {c1}}{\text {b1}}+\frac {(\text {b1} \text {c0}-\text {b0} \text {c1}) \tanh ^{-1}\left (\frac {\text {b0}+\text {b1} K[2]}{\sqrt {\text {b1}} \sqrt {-\text {b1} x^2-2 \text {b0} x+a y^2+\text {b1} K[2]^2+2 \text {b0} K[2]}}\right )}{\text {b1}^{3/2}}}{\sqrt {a}}\right ) (\text {s0}+\text {s1} K[2])}{\sqrt {a} \sqrt {-\text {b1} x^2-2 \text {b0} x+a y^2+\text {b1} K[2]^2+2 \text {b0} K[2]}}dK[2]+c_1\left (-\frac {-a y^2+2 \text {b0} x+\text {b1} x^2}{2 a}\right )\right )\right \}\\ \end {align*}

Maple

restart; 
pde :=  a*y*diff(w(x,y),x)+ (b1*x+b0)*diff(w(x,y),y) =  (c1*x+c0)*w(x,y)+s1*x+s0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
 

\[w \left ( x,y \right ) = \left ( \int ^{x}\!{({\it \_a}\,{\it s1}+{\it s0}) \left ( { \left ( \sqrt { \left ( \left ( {{\it \_a}}^{2}-{x}^{2} \right ) {\it b1}+ \left ( -2\,x+2\,{\it \_a} \right ) {\it b0}+a{y}^{2} \right ) a}\sqrt {a{\it b1}}+a \left ( {\it \_a}\,{\it b1}+{\it b0} \right ) \right ) {\frac {1}{\sqrt {a{\it b1}}}}} \right ) ^{{\frac {{\it b0}\,{\it c1}-{\it b1}\,{\it c0}}{{\it b1}}{\frac {1}{\sqrt {a{\it b1}}}}}}{{\rm e}^{-{\frac {{\it c1}}{a{\it b1}}\sqrt { \left ( \left ( {{\it \_a}}^{2}-{x}^{2} \right ) {\it b1}+ \left ( -2\,x+2\,{\it \_a} \right ) {\it b0}+a{y}^{2} \right ) a}}}}{\frac {1}{\sqrt { \left ( \left ( {{\it \_a}}^{2}-{x}^{2} \right ) {\it b1}+ \left ( -2\,x+2\,{\it \_a} \right ) {\it b0}+a{y}^{2} \right ) a}}}}{d{\it \_a}}+{\it \_F1} \left ( {\frac {a{y}^{2}-{\it b1}\,{x}^{2}-2\,x{\it b0}}{a}} \right ) \right ) \left ( \sqrt {{a}^{2}{y}^{2}}+{a \left ( {\it b1}\,x+{\it b0} \right ) {\frac {1}{\sqrt {a{\it b1}}}}} \right ) ^{-{\frac {{\it b0}\,{\it c1}-{\it b1}\,{\it c0}}{{\it b1}}{\frac {1}{\sqrt {a{\it b1}}}}}}{{\rm e}^{{\frac {{\it c1}}{a{\it b1}}\sqrt {{a}^{2}{y}^{2}}}}}\]

____________________________________________________________________________________