6.6.10 4.4

6.6.10.1 [1482] Problem 1
6.6.10.2 [1483] Problem 2
6.6.10.3 [1484] Problem 3
6.6.10.4 [1485] Problem 4
6.6.10.5 [1486] Problem 5
6.6.10.6 [1487] Problem 6

6.6.10.1 [1482] Problem 1

problem number 1482

Added May 19, 2019.

Problem Chapter 6.4.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \coth (\gamma z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},\frac {\log (\cosh (\gamma z))}{\gamma }-\frac {c x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {ay-xb}{a}},-{\frac {1}{2\,c\gamma } \left ( 2\,c\gamma \,x-a\ln \left ( {\frac { \left ( \RootOf \left ( \gamma \,z-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -1 \right ) ^{2}}{\RootOf \left ( \gamma \,z-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -2}} \right ) +\ln \left ( \RootOf \left ( \gamma \,z-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) \right ) a \right ) } \right ) \]

____________________________________________________________________________________

6.6.10.2 [1483] Problem 2

problem number 1483

Added May 19, 2019.

Problem Chapter 6.4.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \coth (\beta x) w_y + c \coth (\lambda x) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*x]*D[w[x, y,z], y] +c*Coth[lambda*x]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b \log (\sinh (\beta x))}{a \beta },z-\frac {c \log (\sinh (\lambda x))}{a \lambda }\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*coth(beta*x)*diff(w(x,y,z),y)+c*coth(lambda*x)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {2\,ya\beta +\ln \left ( {\rm coth} \left (\beta \,x\right )-1 \right ) b+\ln \left ( {\rm coth} \left (\beta \,x\right )+1 \right ) b}{2\,a\beta }},{\frac {2\,za\lambda +c\ln \left ( {\rm coth} \left (x\lambda \right )-1 \right ) +c\ln \left ( {\rm coth} \left (x\lambda \right )+1 \right ) }{2\,a\lambda }} \right ) \]

____________________________________________________________________________________

6.6.10.3 [1484] Problem 3

problem number 1484

Added May 19, 2019.

Problem Chapter 6.4.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \coth (\beta y) w_y + c \coth (\lambda x) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +c*Coth[lambda*x]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\log (\cosh (\beta y))}{\beta }-\frac {b x}{a},z-\frac {c \log (\sinh (\lambda x))}{a \lambda }\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+c*coth(lambda*x)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {1}{2\,\beta \,b} \left ( -2\,b\beta \,x+a\ln \left ( {\frac { \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -1 \right ) ^{2}}{\RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -2}} \right ) -\ln \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) \right ) a \right ) },{\frac {2\,za\lambda +c\ln \left ( {\rm coth} \left (x\lambda \right )-1 \right ) +c\ln \left ( {\rm coth} \left (x\lambda \right )+1 \right ) }{2\,a\lambda }} \right ) \]

____________________________________________________________________________________

6.6.10.4 [1485] Problem 4

problem number 1485

Added May 19, 2019.

Problem Chapter 6.4.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \coth (\beta y) w_y + c \coth (\gamma z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {\log (\cosh (\beta y))}{\beta }-\frac {b x}{a},\frac {b \log \left (\cosh ^2(\gamma z)\right )}{\gamma }-\frac {2 c \log (\cosh (\beta y))}{\beta }\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\it \_F1} \left ( {\frac {1}{2\,\beta \,b} \left ( -2\,b\beta \,x+a\ln \left ( {\frac { \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -1 \right ) ^{2}}{\RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -2}} \right ) -\ln \left ( \RootOf \left ( \beta \,y-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) \right ) a \right ) },-{\frac {1}{2\,c\gamma } \left ( 2\,c\gamma \,x-a\ln \left ( {\frac { \left ( \RootOf \left ( \gamma \,z-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -1 \right ) ^{2}}{\RootOf \left ( \gamma \,z-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) -2}} \right ) +\ln \left ( \RootOf \left ( \gamma \,z-{\rm arccoth} \left ({\it \_Z}-1\right ) \right ) \right ) a \right ) } \right ) \]

____________________________________________________________________________________

6.6.10.5 [1486] Problem 5

problem number 1486

Added May 19, 2019.

Problem Chapter 6.4.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a \coth (\lambda x) w_x + b \coth (\beta y) w_y + c \coth (\gamma z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*Coth[lambda*x]*D[w[x, y,z], x] + b*Coth[beta*y]*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde :=  a*coth(lambda*x)*diff(w(x,y,z),x)+ b*coth(beta*y)*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
 

\[w \left ( x,y,z \right ) ={{\it \_C1}\,{\it \_C2}\,{\it \_C3} \left ( {\rm coth} \left (x\lambda \right )+1 \right ) ^{-{\frac {{\it \_c}_{{1}}}{2\,\lambda }}} \left ( {\rm coth} \left (x\lambda \right ) \right ) ^{{\frac {{\it \_c}_{{1}}}{\lambda }}} \left ( {\rm coth} \left (x\lambda \right )-1 \right ) ^{-{\frac {{\it \_c}_{{1}}}{2\,\lambda }}} \left ( {\rm coth} \left (\beta \,y\right )+1 \right ) ^{-{\frac {{\it \_c}_{{2}}}{2\,\beta }}} \left ( {\rm coth} \left (\beta \,y\right ) \right ) ^{{\frac {{\it \_c}_{{2}}}{\beta }}} \left ( {\rm coth} \left (\beta \,y\right )-1 \right ) ^{-{\frac {{\it \_c}_{{2}}}{2\,\beta }}} \left ( {\rm coth} \left (\gamma \,z\right )-1 \right ) ^{{\frac {a{\it \_c}_{{1}}}{2\,c\gamma }}} \left ( {\rm coth} \left (\gamma \,z\right )-1 \right ) ^{{\frac {b{\it \_c}_{{2}}}{2\,c\gamma }}} \left ( {\rm coth} \left (\gamma \,z\right )+1 \right ) ^{{\frac {a{\it \_c}_{{1}}}{2\,c\gamma }}} \left ( {\rm coth} \left (\gamma \,z\right )+1 \right ) ^{{\frac {b{\it \_c}_{{2}}}{2\,c\gamma }}} \left ( \left ( {\rm coth} \left (\gamma \,z\right ) \right ) ^{{\frac {a{\it \_c}_{{1}}}{c\gamma }}} \right ) ^{-1} \left ( \left ( {\rm coth} \left (\gamma \,z\right ) \right ) ^{{\frac {b{\it \_c}_{{2}}}{c\gamma }}} \right ) ^{-1}}\]

____________________________________________________________________________________

6.6.10.6 [1487] Problem 6

problem number 1487

Added May 19, 2019.

Problem Chapter 6.4.4.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a \coth (\beta y) w_x + b \coth (\lambda x) w_y + c \coth (\gamma z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*Coth[beta*y]*D[w[x, y,z], x] + b*Coth[lambda*x]*D[w[x, y,z], y] +c*Coth[gamma*z]*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
pde :=  a*coth(beta*y)*diff(w(x,y,z),x)+ b*coth(lambda*x)*diff(w(x,y,z),y)+c*coth(gamma*z)*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z),'build')),output='realtime'));
 

\[w \left ( x,y,z \right ) ={{\it \_C1} \left ( {\rm coth} \left (\gamma \,z\right )+1 \right ) ^{-{\frac {{\it \_c}_{{3}}}{2\,\gamma }}} \left ( {\rm coth} \left (\gamma \,z\right ) \right ) ^{{\frac {{\it \_c}_{{3}}}{\gamma }}} \left ( {\rm coth} \left (\gamma \,z\right )-1 \right ) ^{-{\frac {{\it \_c}_{{3}}}{2\,\gamma }}}{\it \_F5} \left ( {\frac {a}{\beta \,b}\ln \left ( \RootOf \left ( \beta \,y-\arcsinh \left ( \left ( {{\rm e}^{2\,x\lambda }}-1 \right ) ^{{\frac {\beta \,b}{a\lambda }}}{\it \_Z}\,{2}^{-{\frac {\beta \,b}{a\lambda }}}{{\rm e}^{-{\frac {b\beta \,x}{a}}}} \right ) \right ) \right ) } \right ) \left ( {{\rm e}^{{\frac {c{\it \_c}_{{3}}}{a}\RootOf \left ( \beta \,y-\arcsinh \left ( \left ( {{\rm e}^{2\,x\lambda }}-1 \right ) ^{{\frac {\beta \,b}{a\lambda }}}{\it \_Z}\,{2}^{-{\frac {\beta \,b}{a\lambda }}}{{\rm e}^{-{\frac {b\beta \,x}{a}}}} \right ) \right ) \int ^{x}\!{ \left ( {{\rm e}^{2\,{\it \_a}\,\lambda }}-1 \right ) ^{{\frac {\beta \,b}{a\lambda }}}{{\rm e}^{-{\frac {{\it \_a}\,\beta \,b}{a}}}}{\frac {1}{\sqrt {1+{4}^{-{\frac {\beta \,b}{a\lambda }}} \left ( {{\rm e}^{2\,{\it \_a}\,\lambda }}-1 \right ) ^{2\,{\frac {\beta \,b}{a\lambda }}} \left ( \RootOf \left ( \beta \,y-\arcsinh \left ( \left ( {{\rm e}^{2\,x\lambda }}-1 \right ) ^{{\frac {\beta \,b}{a\lambda }}}{\it \_Z}\,{2}^{-{\frac {\beta \,b}{a\lambda }}}{{\rm e}^{-{\frac {b\beta \,x}{a}}}} \right ) \right ) \right ) ^{2}{{\rm e}^{-2\,{\frac {{\it \_a}\,\beta \,b}{a}}}}}}}}{d{\it \_a}} \left ( {2}^{{\frac {\beta \,b}{a\lambda }}} \right ) ^{-1}}}} \right ) ^{-1}}\]

____________________________________________________________________________________