6.7.5 3.1

6.7.5.1 [1615] Problem 1
6.7.5.2 [1616] Problem 2
6.7.5.3 [1617] Problem 3
6.7.5.4 [1618] Problem 4
6.7.5.5 [1619] Problem 5
6.7.5.6 [1620] Problem 6
6.7.5.7 [1621] Problem 7
6.7.5.8 [1622] Problem 8

6.7.5.1 [1615] Problem 1

problem number 1615

Added June 11, 2019.

Problem Chapter 7.3.1.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a e^{\lambda x} w_y + b e^{\beta x} w_z = c e^{\gamma x} \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*x]*D[w[x, y,z], y] +b*Exp[beta*x]*D[w[x,y,z],z]== c*Exp[gamma*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \frac {c e^{\gamma x}}{\gamma }+c_1\left (y-\frac {a e^{\lambda x}}{\lambda },z-\frac {b e^{\beta x}}{\beta }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*x)*diff(w(x,y,z),y)+b*exp(beta*x)*diff(w(x,y,z),z)=  c*exp(gamma*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\frac {1}{\gamma } \left ( {\it \_F1} \left ( {\frac {-a{{\rm e}^{x\lambda }}+\lambda \,y}{\lambda }},{\frac {\beta \,z-b{{\rm e}^{\beta \,x}}}{\beta }} \right ) \gamma +c{{\rm e}^{x\gamma }} \right ) }\]

____________________________________________________________________________________

6.7.5.2 [1616] Problem 2

problem number 1616

Added June 11, 2019.

Problem Chapter 7.3.1.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a e^{\lambda x} w_y + b e^{\beta y} w_z = c e^{\gamma y} + s e^{\mu z} \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*x]*D[w[x, y,z], y] +b*Exp[beta*y]*D[w[x,y,z],z]== c*Exp[gamma*y]+s*Exp[mu*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \int _1^x\left (e^{\gamma \left (\frac {a \left (-e^{\lambda x}+e^{\lambda K[1]}\right )}{\lambda }+y\right )} c+\exp \left (\frac {\mu \left (\lambda z-b e^{\beta \left (y-\frac {a e^{\lambda x}}{\lambda }\right )} \text {Ei}\left (\frac {a \beta e^{\lambda x}}{\lambda }\right )+b e^{\beta \left (y-\frac {a e^{\lambda x}}{\lambda }\right )} \text {Ei}\left (\frac {a \beta e^{\lambda K[1]}}{\lambda }\right )\right )}{\lambda }\right ) s\right )dK[1]+c_1\left (y-\frac {a e^{\lambda x}}{\lambda },z-\frac {b \text {Ei}\left (\frac {a \beta e^{\lambda x}}{\lambda }\right ) e^{\beta \left (y-\frac {a e^{\lambda x}}{\lambda }\right )}}{\lambda }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*x)*diff(w(x,y,z),y)+b*exp(beta*y)*diff(w(x,y,z),z)=  c*exp(gamma*y)+s*exp(mu*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) =\int ^{x}\!c{{\rm e}^{-{\frac {\gamma \, \left ( a{{\rm e}^{x\lambda }}-a{{\rm e}^{{\it \_a}\,\lambda }}-\lambda \,y \right ) }{\lambda }}}}+s{{\rm e}^{{\frac {\mu }{\lambda } \left ( b \left ( \Ei \left ( 1,-{\frac {\beta \,a{{\rm e}^{x\lambda }}}{\lambda }} \right ) -\Ei \left ( 1,-{\frac {a\beta \,{{\rm e}^{{\it \_a}\,\lambda }}}{\lambda }} \right ) \right ) {{\rm e}^{-{\frac {\beta \, \left ( a{{\rm e}^{x\lambda }}-\lambda \,y \right ) }{\lambda }}}}+\lambda \,z \right ) }}}{d{\it \_a}}+{\it \_F1} \left ( {\frac {-a{{\rm e}^{x\lambda }}+\lambda \,y}{\lambda }},{\frac {1}{\lambda } \left ( b{{\rm e}^{-{\frac {\beta \, \left ( a{{\rm e}^{x\lambda }}-\lambda \,y \right ) }{\lambda }}}}\Ei \left ( 1,-{\frac {\beta \,a{{\rm e}^{x\lambda }}}{\lambda }} \right ) +\lambda \,z \right ) } \right ) \]

____________________________________________________________________________________

6.7.5.3 [1617] Problem 3

problem number 1617

Added June 11, 2019.

Problem Chapter 7.3.1.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + a e^{\lambda y} w_y + b e^{\beta y} w_z = c e^{\gamma x} + s e^{\mu z} \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + a*Exp[lambda*y]*D[w[x, y,z], y] +b*Exp[beta*y]*D[w[x,y,z],z]== c*Exp[gamma*x]+s*Exp[mu*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \int _1^x\left (e^{\gamma K[1]} c+\exp \left (-\frac {\mu \left (b \lambda (x-K[1]) \left (a \lambda (x-K[1])+e^{-\lambda y}\right )^{-\frac {\beta }{\lambda }}+(\beta -\lambda ) z+\frac {b e^{-\lambda y} \left (\left (a \lambda (x-K[1])+e^{-\lambda y}\right )^{-\frac {\beta }{\lambda }}-\left (e^{-\lambda y}\right )^{-\frac {\beta }{\lambda }}\right )}{a}\right )}{\lambda -\beta }\right ) s\right )dK[1]+c_1\left (-\frac {a \lambda x+e^{-\lambda y}}{\lambda },\frac {b \left (e^{-\lambda y}\right )^{1-\frac {\beta }{\lambda }}}{a (\lambda -\beta )}+z\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ a*exp(lambda*y)*diff(w(x,y,z),y)+b*exp(beta*y)*diff(w(x,y,z),z)=  c*exp(gamma*x)+s*exp(mu*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) =\int ^{x}\!c{{\rm e}^{{\it \_a}\,\gamma }}+s{{\rm e}^{{\frac {\mu }{ \left ( \beta -\lambda \right ) a} \left ( -b \left ( \left ( {{\rm e}^{-\lambda \,y}} \right ) ^{-1} \right ) ^{{\frac {\beta }{\lambda }}}{{\rm e}^{-\lambda \,y}}+b \left ( {{\rm e}^{-\lambda \,y}}+a\lambda \, \left ( x-{\it \_a} \right ) \right ) \left ( \left ( {{\rm e}^{-\lambda \,y}}+a\lambda \, \left ( x-{\it \_a} \right ) \right ) ^{-1} \right ) ^{{\frac {\beta }{\lambda }}}+za \left ( \beta -\lambda \right ) \right ) }}}{d{\it \_a}}+{\it \_F1} \left ( {\frac {-x\lambda \,a-{{\rm e}^{-\lambda \,y}}}{a\lambda }},{\frac {1}{ \left ( \beta -\lambda \right ) a} \left ( -b \left ( \left ( {{\rm e}^{-\lambda \,y}} \right ) ^{-1} \right ) ^{{\frac {\beta }{\lambda }}}{{\rm e}^{-\lambda \,y}}+za \left ( \beta -\lambda \right ) \right ) } \right ) \]

____________________________________________________________________________________

6.7.5.4 [1618] Problem 4

problem number 1618

Added June 11, 2019.

Problem Chapter 7.3.1.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ w_x + (A_1 e^{\alpha _1 x} +B_1 e^{\nu _1 x+\lambda y} ) w_y + (A_2 e^{\alpha _2 x} +B_2 e^{\nu _2 x+\beta y} ) w_z = k e^{\gamma z} \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[w[x, y,z], x] + (A1*Exp[alpha1*x] +B1*Exp[nu1*x+lambda*y] )*D[w[x, y,z], y] +(A2*Exp[alpha2*x] +B2*Exp[nu2*x+beta*y] )*D[w[x,y,z],z]== k*Exp[gamma*z]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

Failed

Maple

restart; 
local gamma; 
pde := diff(w(x,y,z),x)+ (A1*exp(alpha1*x) +B1*exp(nu1*x+lambda*y) )*diff(w(x,y,z),y)+(A2*exp(alpha2*x) +B2*exp(nu2*x+beta*y) )*diff(w(x,y,z),z)= k*exp(gamma*z); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) =\int ^{x}\!k{{\rm e}^{\gamma \, \left ( \int \!{\it A2}\,{{\rm e}^{\alpha 2\,{\it \_f}}}+ \left ( {\it B1}\,\int \!{{\rm e}^{\nu 1\,x+{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,x}}}{\alpha 1}}}}\,{\rm d}x\lambda -\int \!{{\rm e}^{{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,{\it \_f}}}+\nu 1\,{\it \_f}\,\alpha 1}{\alpha 1}}}}\,{\rm d}{\it \_f}{\it B1}\,\lambda +{{\rm e}^{{\frac {\lambda \, \left ( {\it A1}\,{{\rm e}^{\alpha 1\,x}}-\alpha 1\,y \right ) }{\alpha 1}}}} \right ) ^{-{\frac {\beta }{\lambda }}}{\it B2}\,{{\rm e}^{{\frac {\beta \,{\it A1}\,{{\rm e}^{\alpha 1\,{\it \_f}}}+\nu 2\,{\it \_f}\,\alpha 1}{\alpha 1}}}}\,{\rm d}{\it \_f}-\int ^{x}\!{\it A2}\,{{\rm e}^{\alpha 2\,{\it \_b}}}+ \left ( {\it B1}\,\int \!{{\rm e}^{\nu 1\,x+{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,x}}}{\alpha 1}}}}\,{\rm d}x\lambda -\int \!{{\rm e}^{{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,{\it \_b}}}+\nu 1\,{\it \_b}\,\alpha 1}{\alpha 1}}}}\,{\rm d}{\it \_b}{\it B1}\,\lambda +{{\rm e}^{{\frac {\lambda \, \left ( {\it A1}\,{{\rm e}^{\alpha 1\,x}}-\alpha 1\,y \right ) }{\alpha 1}}}} \right ) ^{-{\frac {\beta }{\lambda }}}{\it B2}\,{{\rm e}^{{\frac {\beta \,{\it A1}\,{{\rm e}^{\alpha 1\,{\it \_b}}}+\nu 2\,{\it \_b}\,\alpha 1}{\alpha 1}}}}{d{\it \_b}}+z \right ) }}{d{\it \_f}}+{\it \_F1} \left ( {\frac {1}{\lambda } \left ( -{\it B1}\,\int \!{{\rm e}^{\nu 1\,x+{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,x}}}{\alpha 1}}}}\,{\rm d}x\lambda -{{\rm e}^{{\frac {\lambda \, \left ( {\it A1}\,{{\rm e}^{\alpha 1\,x}}-\alpha 1\,y \right ) }{\alpha 1}}}} \right ) },-\int ^{x}\!{\it A2}\,{{\rm e}^{\alpha 2\,{\it \_b}}}+ \left ( {\it B1}\,\int \!{{\rm e}^{\nu 1\,x+{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,x}}}{\alpha 1}}}}\,{\rm d}x\lambda -\int \!{{\rm e}^{{\frac {\lambda \,{\it A1}\,{{\rm e}^{\alpha 1\,{\it \_b}}}+\nu 1\,{\it \_b}\,\alpha 1}{\alpha 1}}}}\,{\rm d}{\it \_b}{\it B1}\,\lambda +{{\rm e}^{{\frac {\lambda \, \left ( {\it A1}\,{{\rm e}^{\alpha 1\,x}}-\alpha 1\,y \right ) }{\alpha 1}}}} \right ) ^{-{\frac {\beta }{\lambda }}}{\it B2}\,{{\rm e}^{{\frac {\beta \,{\it A1}\,{{\rm e}^{\alpha 1\,{\it \_b}}}+\nu 2\,{\it \_b}\,\alpha 1}{\alpha 1}}}}{d{\it \_b}}+z \right ) \]

____________________________________________________________________________________

6.7.5.5 [1619] Problem 5

problem number 1619

Added June 11, 2019.

Problem Chapter 7.3.1.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a e^{\alpha x} w_x + b e^{\beta y} w_y + c e^{\gamma z} w_z = k e^{\lambda x} \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[alpha*x]*D[w[x, y,z], x] + b*Exp[beta*y]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]== k*Exp[lambda*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to -\frac {k e^{x (\lambda -\alpha )}}{a (\alpha -\lambda )}+c_1\left (\frac {b e^{-\alpha x}}{a \alpha }-\frac {e^{-\beta y}}{\beta },\frac {c e^{-\alpha x}}{a \alpha }-\frac {e^{-\gamma z}}{\gamma }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a*exp(alpha*x)*diff(w(x,y,z),x)+  b*exp(beta*y)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= k*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\frac {1}{ \left ( -\alpha +\lambda \right ) a} \left ( \left ( -\alpha +\lambda \right ) a{\it \_F1} \left ( {\frac { \left ( {{\rm e}^{\beta \,y}}\beta \,b-a\alpha \,{{\rm e}^{\alpha \,x}} \right ) {{\rm e}^{-\alpha \,x-\beta \,y}}}{\alpha \,b\beta }},{\frac { \left ( {{\rm e}^{\gamma \,z}}c\gamma -a\alpha \,{{\rm e}^{\alpha \,x}} \right ) {{\rm e}^{-\alpha \,x-\gamma \,z}}}{\alpha \,c\gamma }} \right ) +k{{\rm e}^{-x \left ( \alpha -\lambda \right ) }} \right ) }\]

____________________________________________________________________________________

6.7.5.6 [1620] Problem 6

problem number 1620

Added June 11, 2019.

Problem Chapter 7.3.1.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a e^{\beta y} w_x + b e^{\alpha x} w_y + c e^{\gamma z} w_z = k e^{\lambda x} \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*Exp[beta*x]*D[w[x, y,z], x] + b*Exp[alpha*x]*D[w[x, y,z], y] +c*Exp[gamma*z]*D[w[x,y,z],z]== k*Exp[lambda*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to -\frac {k e^{x (\lambda -\beta )}}{a (\beta -\lambda )}+c_1\left (\frac {c e^{-\beta x}}{a \beta }-\frac {e^{-\gamma z}}{\gamma },y-\frac {b e^{\alpha x-\beta x}}{a \alpha -a \beta }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := a*exp(beta*y)*diff(w(x,y,z),x)+  b*exp(alpha*x)*diff(w(x,y,z),y)+c*exp(gamma*z)*diff(w(x,y,z),z)= k*exp(lambda*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) =\int ^{x}\!{\frac {{{\rm e}^{{\it \_a}\,\lambda }}k\alpha }{{{\rm e}^{\beta \,y}}a\alpha -b\beta \, \left ( {{\rm e}^{\alpha \,x}}-{{\rm e}^{\alpha \,{\it \_a}}} \right ) }}{d{\it \_a}}+{\it \_F1} \left ( {\frac {{{\rm e}^{\beta \,y}}a\alpha -{{\rm e}^{\alpha \,x}}b\beta }{\alpha \,b\beta }},-{\frac {\beta \,b}{ \left ( {{\rm e}^{\beta \,y}}a\alpha -{{\rm e}^{\alpha \,x}}b\beta \right ) \alpha \,c\gamma } \left ( a{{\rm e}^{\beta \,y}}{{\rm e}^{-\gamma \,z}}\alpha -{{\rm e}^{\alpha \,x}}{{\rm e}^{-\gamma \,z}}b\beta +\alpha \,c\gamma \,x-\ln \left ( {\frac {{{\rm e}^{\beta \,y}}a\alpha }{\beta \,b}} \right ) \gamma \,c \right ) } \right ) \]

____________________________________________________________________________________

6.7.5.7 [1621] Problem 7

problem number 1621

Added June 11, 2019.

Problem Chapter 7.3.1.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ (a_1+a_2 e^{\alpha x}) w_x + (b_1+b_2 e^{\beta y}) w_y + (c_1+c_2 e^{\gamma z}) w_z = k_1 + k_2 e^{\alpha x} \]

Mathematica

ClearAll["Global`*"]; 
pde =  (a1+a2*Exp[alpha*x])*D[w[x, y,z], x] + (b1+b2*Exp[beta*y])*D[w[x, y,z], y] +(c1+c2*Exp[gamma*z])*D[w[x,y,z],z]== k1+k2*Exp[alpha*x]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \frac {(\text {a1} \text {k2}-\text {a2} \text {k1}) \log \left (\text {a1}+\text {a2} e^{\alpha x}\right )+\text {a2} \alpha \text {k1} x}{\text {a1} \text {a2} \alpha }+c_1\left (\frac {\log \left (\frac {e^{\beta y} \left (\text {a1}+\text {a2} e^{\alpha x}\right )^{\frac {\text {b1} \beta }{\text {a1} \alpha }}}{\text {b1}+\text {b2} e^{\beta y}}\right )}{\text {b1} \beta }-\frac {x}{\text {a1}},\frac {\log \left (\frac {e^{\gamma z} \left (\text {a1}+\text {a2} e^{\alpha x}\right )^{\frac {\text {c1} \gamma }{\text {a1} \alpha }}}{\text {c1}+\text {c2} e^{\gamma z}}\right )}{\text {c1} \gamma }-\frac {x}{\text {a1}}\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := (a1+a2*exp(alpha*x))*diff(w(x,y,z),x)+ (b1+b2*exp(beta*y))*diff(w(x,y,z),y)+(c1+c2*exp(gamma*z))*diff(w(x,y,z),z)= k1+k2*exp(alpha*x); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\frac {1}{\alpha \,{\it a2}\,{\it a1}} \left ( {\it \_F1} \left ( {\frac {1}{\alpha \,{\it a1}\,\beta \,{\it b1}} \left ( -\alpha \,{\it a1}\,\RootOf \left ( y\alpha \,{\it a1}\,\beta -\alpha \,{\it a1}\,\ln \left ( {\frac {-{\it b1}+{{\rm e}^{{\it \_Z}}}}{{\it b2}} \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) ^{{\frac {\beta \,{\it b1}}{\alpha \,{\it a1}}}}} \right ) +\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) \beta \,{\it b1} \right ) - \left ( -\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) {\it b1}+\alpha \, \left ( -y{\it a1}+{\it b1}\,x \right ) \right ) \beta \right ) },{\frac {1}{\alpha \,{\it a1}\,{\it c1}\,\gamma } \left ( -\alpha \,{\it a1}\,\RootOf \left ( z\alpha \,{\it a1}\,\gamma -\alpha \,{\it a1}\,\ln \left ( {\frac {-{\it c1}+{{\rm e}^{{\it \_Z}}}}{{\it c2}} \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) ^{{\frac {{\it c1}\,\gamma }{\alpha \,{\it a1}}}}} \right ) +\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) {\it c1}\,\gamma \right ) -\gamma \, \left ( -{\it c1}\,\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) +\alpha \, \left ( -{\it a1}\,z+{\it c1}\,x \right ) \right ) \right ) } \right ) \alpha \,{\it a2}\,{\it a1}+\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) {\it k2}\,{\it a1}-\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) {\it k1}\,{\it a2}+{\it k1}\,\ln \left ( {{\rm e}^{\alpha \,x}} \right ) {\it a2} \right ) }\]

____________________________________________________________________________________

6.7.5.8 [1622] Problem 8

problem number 1622

Added June 11, 2019.

Problem Chapter 7.3.1.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ e^{\beta y}(a_1+a_2 e^{\alpha x}) w_x + e^{\alpha x} (b_1+b_2 e^{\beta y}) w_y + c e^{\beta y+\gamma z} w_z = k_3 e^{\beta y} (k_1 + k_2 e^{\alpha x}) \]

Mathematica

ClearAll["Global`*"]; 
pde = Exp[beta*y]*(a1+a2*Exp[alpha*x])*D[w[x, y,z], x] + Exp[alpha*x]*(b1+b2*Exp[beta*y])*D[w[x, y,z], y] +c*Exp[beta*y+gamma*z]*D[w[x,y,z],z]== k3*Exp[beta*y]*(k1+k2*Exp[alpha*x]); 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 

\[\left \{\left \{w(x,y,z)\to \frac {\text {k3} \left ((\text {a1} \text {k2}-\text {a2} \text {k1}) \log \left (\text {a1}+\text {a2} e^{\alpha x}\right )+\text {a2} \alpha \text {k1} x\right )}{\text {a1} \text {a2} \alpha }+c_1\left (\frac {c \log \left (\text {a1}+\text {a2} e^{\alpha x}\right )}{\text {a1} \alpha }-\frac {c x}{\text {a1}}-\frac {e^{-\gamma z}}{\gamma },\frac {\log \left (\text {b1}+\text {b2} e^{\beta y}\right )}{\text {b2} \beta }-\frac {\log \left (\text {a1}+\text {a2} e^{\alpha x}\right )}{\text {a2} \alpha }\right )\right \}\right \}\]

Maple

restart; 
local gamma; 
pde := exp(beta*y)*(a1+a2*exp(alpha*x))*diff(w(x,y,z),x)+  exp(alpha*x)*(b1+b2*exp(beta*y))*diff(w(x,y,z),y)+c*exp(beta*y+gamma*z)*diff(w(x,y,z),z)= k3*exp(beta*y)*(k1+k2*exp(alpha*x)); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 

\[w \left ( x,y,z \right ) ={\frac {1}{\alpha \,{\it a2}\,{\it a1}} \left ( {\it k3}\, \left ( {\it a1}\,{\it k2}-{\it a2}\,{\it k1} \right ) \ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) +{\it a2}\,\alpha \, \left ( {\it k3}\,x{\it k1}+{\it \_F1} \left ( {\frac {1}{\alpha \,{\it a2}\,\beta \,{\it b2}} \left ( y\alpha \,{\it a2}\,\beta -\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) \beta \,{\it b2}+\alpha \,{\it a2}\,\RootOf \left ( y\alpha \,{\it a2}\,\beta -\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) \beta \,{\it b2}-\alpha \,{\it a2}\,\ln \left ( {\frac {{\it b1}}{-{\it b2}+{{\rm e}^{{\it \_Z}}}} \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) ^{-{\frac {\beta \,{\it b2}}{\alpha \,{\it a2}}}}} \right ) \right ) \right ) },{\frac {\ln \left ( {\it a1}+{\it a2}\,{{\rm e}^{\alpha \,x}} \right ) \gamma \,c-\alpha \, \left ( c\gamma \,x+{{\rm e}^{-\gamma \,z}}{\it a1} \right ) }{{\it a1}\,\alpha \,c\gamma }} \right ) {\it a1} \right ) \right ) }\]

____________________________________________________________________________________