Added December 20, 2018.
Example 20, Taken from https://www.mapleprimes.com/posts/209970-Exact-Solutions-For-PDE-And-Boundary--Initial-Conditions-2018
Solve Laplace equation in polar coordinates inside quarter disk with \(0<r<1\) and \(0<\theta <\frac {\pi }{2}\)
Solve for \(u\left ( r,\theta \right )\) \begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta }=0 \end {align*}
Boundary conditions
\begin {align*} u(r,0) &= 0 \\ u(r,\frac {\pi }{2}) &=0 \\ u_r(1,\theta ) &= f(\theta ) \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + (1*D[u[r, theta], r])/r + (1*D[u[r, theta], {theta, 2}])/r^2 == 0; bcOnR = {Derivative[1, 0][u][1, theta] == f[theta]}; bcOnTheta = {u[r, 0] == 0, u[r, Pi/2] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bcOnR, bcOnTheta}, u[r, theta], {r, theta}, Assumptions -> {r > 0, r < 1, theta > 0, theta < Pi/2}], 60*10]];
\[\left \{\left \{u(r,\theta )\to \underset {K[1]=1}{\overset {\infty }{\sum }}\frac {r^{2 K[1]} \left (\int _0^{\frac {\pi }{2}} \frac {2 f(\theta ) \sin (2 \theta K[1])}{\sqrt {\pi }} \, d\theta \right ) \sin (2 \theta K[1])}{\sqrt {\pi } K[1]}\right \}\right \}\]
Maple ✓
restart; pde := diff(u(r, theta), r$2)+1/r* diff(u(r, theta), r)+1/r^2* diff(u(r, theta), theta$2)= 0; bc_on_theta:=u(r, 0) = 0, u(r,Pi/2) = 0; bc_on_r:= eval( diff(u(r,theta),r),r=1)=f(theta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc_on_theta,bc_on_r], u(r, theta), HINT = boundedseries(r = [0])) assuming theta>0, theta < (1/2)*Pi, r>0, r < 1),output='realtime'));
\[u \left (r , \theta \right ) = \moverset {\infty }{\munderset {n =1}{\sum }}\frac {2 r^{2 n} \left (\int _{0}^{\frac {\pi }{2}}f \left (\theta \right ) \sin \left (2 n \theta \right )d \theta \right ) \sin \left (2 n \theta \right )}{\pi n}\]
____________________________________________________________________________________
Added Nov 10, 2019.
Problem 4.3.25 part c. Peter J. Olver, Introduction to Partial Differential Equations, 2014 edition.
Solve Laplace equation in polar coordinates inside a disk
Solve \(\nabla ^{2}u=0\) with \(x^{2} +y^{2}<4\) and boundary conditions \(u=x^{4},x^{2}+y^{2}=4\).
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + (D[u[r, theta], r])/r + (D[u[r, theta], {theta, 2}])/r^2 == 0; bc = u[4, theta] == (4*Cos[theta])^4; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}], 60*10]]; sol = sol /. K[1] -> n;
\[\left \{\left \{u(r,\theta )\to \frac {1}{8} r^4 \cos (4 \theta )+8 r^2 \cos (2 \theta )+96\right \}\right \}\]
Maple ✓
restart; pde := diff(u(r, theta), r$2) + diff(u(r, theta), r)/r + diff(u(r, theta), theta$2)/r^2 = 0; bc := u(4, theta) = (4*cos(theta))^4, u(r, -Pi) = u(r, Pi), (D[2](u))(r, -Pi) = (D[2](u))(r, Pi); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(r, theta))),output='realtime'));
\[u \left (r , \theta \right ) = \frac {r^{4} \cos \left (4 \theta \right )}{8}+8 r^{2} \cos \left (2 \theta \right )+96\]
Hand solution
Solve the following boundary value problems \(\nabla ^{2}u=0,x^{2}+y^{2}<4,u=x^{4},x^{2}+y^{2}=4\)
Solution
In polar coordinates, where \(x=r\cos \theta ,y=r\sin \theta \), we need to solve for \(u\left ( r,\theta \right ) \) inside disk of radius \(r_{0}=4\). The Laplace PDE in polar coordinates is\begin {align*} u_{rr}+\frac {1}{r}u_{r}+\frac {1}{r^{2}}u_{\theta \theta } & =0\qquad 0<r<r_{0},-\pi <\theta <\pi \\ u\left ( r_{0},\theta \right ) & =f\left ( \theta \right ) =\left ( r_{0}\cos \theta \right ) ^{4}\\ u\left ( -\pi \right ) & =u\left ( \pi \right ) \\ u_{\theta }\left ( -\pi \right ) & =u_{\theta }\left ( \pi \right ) \end {align*}
Let the solution be\[ u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) \] Substituting this assumed solution back into the (A) gives\[ r^{2}R^{\prime \prime }\Theta +rR^{\prime }\Theta +R\Theta ^{\prime \prime }=0 \] Dividing the above by \(R\Theta \) gives\begin {align*} r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}+\frac {\Theta ^{\prime \prime }}{\Theta } & =0\\ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R} & =-\frac {\Theta ^{\prime \prime }}{\Theta } \end {align*}
Since each side depends on different independent variable and they are equal, they must be equal to the same constant. say \(\lambda \). \[ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}=-\frac {\Theta ^{\prime \prime }}{\Theta }=\lambda \] This results in the following two ODE’s. The boundaries conditions in original PDE are transferred to each ODE which results in\begin {align} \Theta ^{\prime \prime }+\lambda \Theta & =0\tag {1}\\ \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \nonumber \\ \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \nonumber \end {align}
And\begin {equation} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R=0\tag {2} \end {equation} Starting with ODE (1) with periodic boundary conditions.
Case \(\lambda <0\) The solution is\[ \Theta \left ( \theta \right ) =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) +B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) \] First B.C. gives\begin {align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ A\cosh \left ( -\sqrt {\left \vert \lambda \right \vert }\pi \right ) +B\sinh \left ( -\sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) +B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) -B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) +B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ 2B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =0 \end {align*}
But \(\sinh =0\) only at zero and \(\lambda \neq 0\), hence \(B=0\) and the solution becomes\begin {align*} \Theta \left ( \theta \right ) & =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) \\ \Theta ^{\prime }\left ( \theta \right ) & =A\sqrt {\lambda }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) \end {align*}
Applying the second B.C. gives\begin {align*} \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \\ A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( -\sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ 2A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =0 \end {align*}
But \(\cosh \) is never zero, hence \(A=0\). Therefore trivial solution and \(\lambda <0\) is not an eigenvalue.
Case \(\lambda =0\) The solution is \(\Theta =A\theta +B\). Applying the first B.C. gives\begin {align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ -A\pi +B & =\pi A+B\\ 2\pi A & =0\\ A & =0 \end {align*}
And the solution becomes \(\Theta =B_{0}\). A constant. Hence \(\lambda =0\) is an eigenvalue.
Case \(\lambda >0\)
The solution becomes\begin {align*} \Theta & =A\cos \left ( \sqrt {\lambda }\theta \right ) +B\sin \left ( \sqrt {\lambda }\theta \right ) \\ \Theta ^{\prime } & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\theta \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\theta \right ) \end {align*}
Applying first B.C. gives\begin {align} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \nonumber \\ A\cos \left ( -\sqrt {\lambda }\pi \right ) +B\sin \left ( -\sqrt {\lambda }\pi \right ) & =A\cos \left ( \sqrt {\lambda }\pi \right ) +B\sin \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ A\cos \left ( \sqrt {\lambda }\pi \right ) -B\sin \left ( \sqrt {\lambda }\pi \right ) & =A\cos \left ( \sqrt {\lambda }\pi \right ) +B\sin \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ 2B\sin \left ( \sqrt {\lambda }\pi \right ) & =0 \tag {3} \end {align}
Applying second B.C. gives\begin {align} \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \nonumber \\ -A\sqrt {\lambda }\sin \left ( -\sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( -\sqrt {\lambda }\pi \right ) & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\pi \right ) & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ 2A\sin \left ( \sqrt {\lambda }\pi \right ) & =0 \tag {4} \end {align}
Equations (3,4) can be both zero only if \(A=B=0\) which gives trivial solution, or when \(\sin \left ( \sqrt {\lambda }\pi \right ) =0\). Therefore taking \(\sin \left ( \sqrt {\lambda }\pi \right ) =0\) gives a non-trivial solution. Hence\begin {align*} \sqrt {\lambda }\pi & =n\pi \qquad n=1,2,3,\cdots \\ \lambda _{n} & =n^{2}\qquad n=1,2,3,\cdots \end {align*}
Hence the eigenfunctions are \begin {equation} \{1,\cos \left ( n\theta \right ) ,\sin \left ( n\theta \right ) \}\qquad n=1,2,3,\cdots \tag {5} \end {equation} Now the \(R\) equation is solved
The case for \(\lambda =0\) gives from (2)\begin {align*} r^{2}R^{\prime \prime }+rR^{\prime } & =0\\ R^{\prime \prime }+\frac {1}{r}R^{\prime } & =0\qquad r\neq 0 \end {align*}
The solution to this is\[ R_{0}\left ( r\right ) =A\ln r+C \] Since \(u\) is bounded at \(r=0\) we want \(A=0\). Hence \(R_{0}\left ( r\right ) \) is just a constant.
Case \(\lambda >0\) The ODE (2) becomes\[ r^{2}R^{\prime \prime }+rR^{\prime }-n^{2}R=0\qquad n=1,2,3,\cdots \] Let \(R=r^{p}\), the above becomes\begin {align*} r^{2}p\left ( p-1\right ) r^{p-2}+rpr^{p-1}-n^{2}r^{p} & =0\\ p\left ( p-1\right ) r^{p}+pr^{p}-n^{2}r^{p} & =0\\ p\left ( p-1\right ) +p-n^{2} & =0\\ p^{2} & =n^{2}\\ p & =\pm n \end {align*}
Hence the solution is\[ R_{n}\left ( r\right ) =C_{n}r^{n}+D_{n}\frac {1}{r^{n}}\qquad n=1,2,3,\cdots \] Since \(u\) is bounded at \(r=0\) we want \(D=0\). Hence \(R_{n}\left ( r\right ) =C_{n}r^{n}\).
The complete solution for \(R\left ( r\right ) \) is\begin {equation} R\left ( r\right ) =C_{0}+\sum _{n=1}^{\infty }C_{n}r^{n}\tag {6} \end {equation} Using (5),(6) gives\begin {align*} u_{n}\left ( r,\theta \right ) & =R_{n}\Theta _{n}\\ u\left ( r,\theta \right ) & =\left ( C_{0}+\sum _{n=1}^{\infty }C_{n}r^{n}\right ) \left ( A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \right ) \end {align*}
Combining constants to simplify things gives\begin {equation} u\left ( r,\theta \right ) =\frac {a_{0}}{2}+\sum _{n=1}^{\infty }r^{n}\left ( A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \right ) \tag {7} \end {equation} When \(r=r_{0}\) the above becomes\[ f\left ( \theta \right ) =\frac {a_{0}}{2}+\sum _{n=1}^{\infty }r_{0}^{n}\left ( A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \right ) \] Hence \begin {align*} a_{0} & =\frac {1}{\pi }\int _{-\pi }^{\pi }f\left ( \theta \right ) d\theta \\ r_{0}^{n}A_{n} & =\frac {1}{\pi }\int _{-\pi }^{\pi }f\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta \\ A_{n} & =\frac {1}{\pi r_{0}^{n}}\int _{-\pi }^{\pi }f\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta \end {align*}
And\begin {align*} r_{0}^{n}B_{n} & =\frac {1}{\pi }\int _{-\pi }^{\pi }f\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta \\ B_{n} & =\frac {1}{\pi r_{0}^{n}}\int _{-\pi }^{\pi }f\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta \end {align*}
Hence (7) becomes\begin {equation} u\left ( r,\theta \right ) =\frac {1}{2\pi }\int _{-\pi }^{\pi }f\left ( \theta \right ) d\theta +\frac {1}{\pi }\sum _{n=1}^{\infty }\left ( \frac {r}{r_{0}}\right ) ^{n}\left ( \cos \left ( n\theta \right ) \int _{-\pi }^{\pi }f\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta +\sin \left ( n\theta \right ) \int _{-\pi }^{\pi }f\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta \right ) \tag {8} \end {equation} In this problem \(f\left ( \theta \right ) =\left ( r_{0}\cos \theta \right ) ^{4}\) where \(r_{0}=4\), hence\begin {align*} A_{0} & =\frac {1}{\pi }\int _{-\pi }^{\pi }256\cos ^{4}\theta d\theta \\ & =\frac {256}{\pi }\int _{-\pi }^{\pi }\cos ^{4}\theta d\theta \\ & =\frac {256}{\pi }\left ( \frac {3\theta }{8}+\frac {1}{4}\sin \left ( 2\theta \right ) +\frac {1}{32}\sin \left ( 4\theta \right ) \right ) _{-\pi }^{\pi }\\ & =\frac {256}{\pi }\left ( \frac {3\pi }{8}+\frac {3\pi }{8}\right ) \\ & =\frac {256}{\pi }\left ( \frac {3\pi }{4}\right ) \\ & =192 \end {align*}
And\begin {align*} A_{n} & =\frac {1}{\pi }\int _{-\pi }^{\pi }256\cos ^{4}\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta \\ & =\frac {256}{\pi }\int _{-\pi }^{\pi }\cos ^{4}\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta \end {align*}
To evaluate the above integral, we will start by using the identity \[ \cos ^{4}\left ( \theta \right ) =\frac {3}{8}+\frac {1}{8}\cos \left ( 4\theta \right ) +\frac {1}{2}\cos \left ( 2\theta \right ) \] Therefore the integral now becomes\begin {align} A_{n} & =\frac {256}{\pi }\int _{-\pi }^{\pi }\left ( \frac {3}{8}+\frac {1}{8}\cos \left ( 4\theta \right ) +\frac {1}{2}\cos \left ( 2\theta \right ) \right ) \cos \left ( n\theta \right ) d\theta \nonumber \\ & =\frac {256}{\pi }\left [ \frac {3}{8}\int _{-\pi }^{\pi }\cos \left ( n\theta \right ) d\theta +\frac {1}{8}\int _{-\pi }^{\pi }\cos \left ( 4\theta \right ) \cos \left ( n\theta \right ) d\theta +\frac {1}{2}\int _{-\pi }^{\pi }\cos \left ( 2\theta \right ) \cos \left ( n\theta \right ) d\theta \right ] \tag {1} \end {align}
But \(\int _{-\pi }^{\pi }\cos \left ( n\theta \right ) d\theta =0\) and \(\int _{-\pi }^{\pi }\cos \left ( 4\theta \right ) \cos \left ( n\theta \right ) d\theta \) is not zero, only for \(n=4\) by orthogonality of cosine functions. Hence \begin {align*} \int _{-\pi }^{\pi }\cos \left ( 4\theta \right ) \cos \left ( n\theta \right ) d\theta & =\int _{-\pi }^{\pi }\cos ^{2}\left ( 4\theta \right ) d\theta \\ & =\pi \end {align*}
And similarly, \(\int _{-\pi }^{\pi }\cos \left ( 2\theta \right ) \cos \left ( n\theta \right ) d\theta \) is not zero, only for \(n=2\) by orthogonality of cosine functions. Hence\begin {align*} \int _{-\pi }^{\pi }\cos \left ( 2\theta \right ) \cos \left ( n\theta \right ) d\theta & =\int _{-\pi }^{\pi }\cos ^{2}\left ( 2\theta \right ) d\theta \\ & =\pi \end {align*}
Using these results in (1) gives, for \(n=2\)\begin {align*} A_{2} & =\frac {256}{\pi }\left [ \frac {1}{2}\int _{-\pi }^{\pi }\cos ^{2}\left ( 2\theta \right ) d\theta \right ] \\ & =\frac {256}{\pi }\left ( \frac {\pi }{2}\right ) \\ & =128 \end {align*}
And for \(n=4\)\begin {align*} A_{4} & =\frac {256}{\pi }\left [ \frac {1}{8}\int _{-\pi }^{\pi }\cos ^{2}\left ( 4\theta \right ) d\theta \right ] \\ & =\frac {256}{\pi }\left ( \frac {\pi }{8}\right ) \\ & =32 \end {align*}
And all other \(A_{n}\) are zero. Now that we found all \(A_{n}\), and since \(B_{n}=0\) for all \(n\) (because \(f\left ( \theta \right ) \) is even function) then the solution (8) becomes\begin {align*} u\left ( r,\theta \right ) & =\frac {192}{2}+a_{2}\left ( \frac {r}{4}\right ) ^{2}\cos \left ( 2\theta \right ) +a_{4}\left ( \frac {r}{4}\right ) ^{4}\cos \left ( 4\theta \right ) \\ & =96+128\left ( \frac {r^{2}}{16}\right ) \cos \left ( 2\theta \right ) +32\frac {r^{4}}{256}\cos \left ( 4\theta \right ) \end {align*}
Therefore\[ u\left ( r,\theta \right ) =96+8r^{2}\cos \left ( 2\theta \right ) +\frac {1}{8}r^{4}\cos \left ( 4\theta \right ) \] Here is plot of the above solution.
____________________________________________________________________________________
Added January 8, 2020.
Problem 4.3.25 part d, Peter J. Olver, Introduction to Partial Differential Equations, 2014 edition.
Solve Laplace equation in polar coordinates inside a disk of radius 1.
Solve \(\nabla ^{2}u=0\) and boundary conditions \(\frac {\partial u}{\partial n}=x\).
Mathematica ✗
ClearAll["Global`*"]; pde = Laplacian[u[r, theta], {r, theta}, "Polar"] == 0; bc = {Derivative[1, 0][u][1, theta] == Cos[theta], u[r, -Pi] == u[r, Pi], Derivative[0, 1][u][r, -Pi] == Derivative[0, 1][u][r, Pi]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}], 60*10]];
Failed
Maple ✗
restart; pde:=VectorCalculus:-Laplacian(u(r,theta),'polar'[r,theta])=0; bc := D[1](u)(1, theta) = cos(theta), u(r, -Pi) = u(r, Pi), (D[2](u))(r, -Pi) = (D[2](u))(r, Pi); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(r, theta))),output='realtime'));
sol=()
Hand solution
In polar coordinates, where \(x=r\cos \theta ,y=r\sin \theta \), we need to solve for \(u\left ( r,\theta \right ) \) inside disk of radius \(r_{0}=1\). The Laplace PDE in polar coordinates is\begin {align*} u_{rr}+\frac {1}{r}u_{r}+\frac {1}{r^{2}}u_{\theta \theta } & =0\qquad 0<r<1,-\pi <\theta <\pi \\ u_{r}\left ( 1,\theta \right ) & =f\left ( \theta \right ) =\cos \theta \\ u\left ( -\pi \right ) & =u\left ( \pi \right ) \\ u_{\theta }\left ( -\pi \right ) & =u_{\theta }\left ( \pi \right ) \end {align*}
Using separation of variables, let \(u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) \) the solution is given by\begin {equation} u\left ( r,\theta \right ) =\frac {a_{0}}{2}+\sum _{n=1}^{\infty }a_{n}r^{n}\cos \left ( n\theta \right ) +b_{n}r^{n}\sin \left ( n\theta \right ) \tag {1} \end {equation} At \(r=r_{0}=1\) we have that \(\frac {\partial u\left ( r,\theta \right ) }{\partial r}=\cos \theta \) (since \(x=r\cos \theta \) but \(r=1\) at boundary). The above becomes\[ \cos \theta =\sum _{n=1}^{\infty }na_{n}r^{n-1}\cos \left ( n\theta \right ) +nb_{n}r^{n-1}\sin \left ( n\theta \right ) \] Therefore \(n=1\) is only term that survives in the sum. Hence \(a_{1}=1\) and all others are zero. The solution (1) becomes\[ u\left ( r,\theta \right ) =\frac {a_{0}}{2}+r\cos \left ( \theta \right ) \] The solution is not unique as there is \(a_{0}\) arbitrary constant.
____________________________________________________________________________________
Solve Laplace equation in polar coordinates inside a disk
Solve for \(u\left ( r,\theta \right ) \) \begin {align*} u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta }=0 \end {align*}
With \(0 \leq r\leq a, 0 < \theta \leq 2\pi \) Boundary conditions \begin {align*} u(a,\theta ) & = f(\theta ) \\ \left \vert u\left ( 0,\theta \right ) \right \vert & <\infty \\ u\left ( r,0\right ) & =u\left ( r,2\pi \right ) \\ \frac {\partial u}{\partial \theta }\left ( r,0\right ) & =\frac {\partial u}{\partial \theta }\left ( r,2\pi \right ) \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + (1*D[u[r, theta], r])/r + (1*D[u[r, theta], {theta, 2}])/r^2 == 0; bc = u[a, theta] == f[theta]; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}, Assumptions -> a < r && a > 0 && Inequality[0, Less, theta, LessEqual, 2*Pi]], 60*10]]; sol = sol /. K[1] -> n;
\[\left \{\left \{u(r,\theta )\to \underset {n=1}{\overset {\infty }{\sum }}\frac {\left (\frac {r}{a}\right )^n \left (\cos (n \theta ) \int _{-\pi }^{\pi } \cos (n \theta ) f(\theta ) \, d\theta +\left (\int _{-\pi }^{\pi } f(\theta ) \sin (n \theta ) \, d\theta \right ) \sin (n \theta )\right )}{\pi }+\frac {\int _{-\pi }^{\pi } f(\theta ) \, d\theta }{2 \pi }\right \}\right \}\]
Maple ✓
restart; interface(showassumed=0); pde := (diff(r*(diff(u(r, theta), r)), r))/r +(diff(u(r, theta), theta, theta))/r^2 = 0; bc := u(a, theta) = f(theta), u(r, -Pi) = u(r, Pi), (D[2](u))(r, -Pi) = (D[2](u))(r, Pi); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(r, theta), HINT = boundedseries(r=0))),output='realtime'));
\[u \left (r , \theta \right ) = \frac {\int _{-\pi }^{\pi }f \left (\theta \right )d \theta +2 \pi \left (\moverset {\infty }{\munderset {n =1}{\sum }}\frac {\left (\left (\int _{-\pi }^{\pi }\cos \left (n \theta \right ) f \left (\theta \right )d \theta \right ) \cos \left (n \theta \right )+\left (\int _{-\pi }^{\pi }f \left (\theta \right ) \sin \left (n \theta \right )d \theta \right ) \sin \left (n \theta \right )\right ) \left (\frac {a}{r}\right )^{-n}}{\pi }\right )}{2 \pi }\]
____________________________________________________________________________________
Added January 12, 2020
Solve \(u_{xx}+u_{yy}=0\) on disk \(x^{2}+y^{2}<1\) with boundary condition \(xy^{2}\) when \(x^{2}+y^{2}=a\). Where \(a=1\) in this problem. Express solution in \(x,y\)
The first step is to convert the boundary condition to polar coordinates. Since \(x=r\cos \theta ,y=r\sin \theta \), then at the boundary \(u\left ( r,\theta \right ) =r\cos \theta \left ( r\sin \theta \right ) ^{2}\). But \(r=1\) (the radius). Hence at the boundary, \(u\left ( 1,\theta \right ) =f\left ( \theta \right ) \) where \begin {align*} f\left ( \theta \right ) & =\cos \theta \sin ^{2}\theta \\ & =\cos \theta \left ( 1-\cos ^{2}\theta \right ) \\ & =\cos \theta -\cos ^{3}\theta \end {align*}
But \(\cos ^{3}\theta =\frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \). Therefore the above becomes\begin {align} f\left ( \theta \right ) & =\cos \theta -\left ( \frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \right ) \nonumber \\ & =\frac {1}{4}\cos \theta -\frac {1}{4}\cos 3\theta \tag {1} \end {align}
The above is also seen as the Fourier series of \(f\left ( \theta \right ) \). The PDE in polar coordinates is\[ u_{rr}+\frac {1}{r}u_{r}+\frac {1}{r^{2}}u_{\theta \theta }=0 \]
Mathematica ✓
ClearAll["Global`*"]; a = 1; pde = Laplacian[u[r, theta], {r, theta}, "Polar"] == 0; f[theta_] := 1/4*(Cos[theta] - Cos[3*theta]); bc = {u[a, theta] == f[theta], u[r, -Pi] == u[r, Pi], Derivative[0, 1][u][r, -Pi] == Derivative[0, 1][u][r, Pi]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}], 60*10]];
\[\left \{\left \{u(r,\theta )\to \frac {1}{4} \left (r \cos (\theta )-r^3 \cos (3 \theta )\right )\right \}\right \}\]
Maple ✓
restart; f:=theta-> 1/4*(cos(theta) - cos(3*theta)); a:=1; pde := VectorCalculus:-Laplacian(u(r,theta),'polar'[r,theta]); bc := u(a, theta) = f(theta),u(r, -Pi) = u(r, Pi),(D[2](u))(r, -Pi) = (D[2](u))(r, Pi); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(r, theta), HINT = boundedseries(r=0))),output='realtime')); sol:=simplify(subs(cos(theta)^3=trigsubs(cos(theta)^3)[2],sol),size);
\[u \left (r , \theta \right ) = -\frac {\left (r^{2} \cos \left (3 \theta \right )-\cos \left (\theta \right )\right ) r}{4}\]
Hand solution
Solve \(u_{xx}+u_{yy}=0\) on disk \(x^{2}+y^{2}<1\) with boundary condition \(xy^{2}\) when \(x^{2}+y^{2}=a\). Where \(a=1\) in this problem. Express solution in \(x,y\)
The first step is to convert the boundary condition to polar coordinates. Since \(x=r\cos \theta ,y=r\sin \theta \), then at the boundary \(u\left ( r,\theta \right ) =r\cos \theta \left ( r\sin \theta \right ) ^{2}\). But \(r=1\) (the radius). Hence at the boundary, \(u\left ( 1,\theta \right ) =f\left ( \theta \right ) \) where \begin {align*} f\left ( \theta \right ) & =\cos \theta \sin ^{2}\theta \\ & =\cos \theta \left ( 1-\cos ^{2}\theta \right ) \\ & =\cos \theta -\cos ^{3}\theta \end {align*}
But \(\cos ^{3}\theta =\frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \). Therefore the above becomes\begin {align} f\left ( \theta \right ) & =\cos \theta -\left ( \frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \right ) \nonumber \\ & =\frac {1}{4}\cos \theta -\frac {1}{4}\cos 3\theta \tag {1} \end {align}
The above is also seen as the Fourier series of \(f\left ( \theta \right ) \). The PDE in polar coordinates is\[ u_{rr}+\frac {1}{r}u_{r}+\frac {1}{r^{2}}u_{\theta \theta }=0 \] The solution is known to be\begin {equation} u\left ( r,\theta \right ) =\frac {c_{0}}{2}+\sum _{n=1}^{\infty }r^{n}\left ( c_{n}\cos \left ( n\theta \right ) +k_{n}\sin \left ( n\theta \right ) \right ) \tag {2} \end {equation} Since the above solution is the same as \(f\left ( \theta \right ) \) when \(r=1\), then equating (2) when \(r=1\) to (1) gives\[ \frac {1}{4}\cos \theta -\frac {1}{4}\cos 3\theta =\frac {c_{0}}{2}+\sum _{n=1}^{\infty }\left ( c_{n}\cos \left ( n\theta \right ) +k_{n}\sin \left ( n\theta \right ) \right ) \] By comparing terms on both sides, this shows by inspection that\begin {align*} c_{0} & =0\\ c_{1} & =\frac {1}{4}\\ c_{3} & =\frac {-1}{4} \end {align*}
And all other \(c_{n},k_{n}\) are zero. Using the above result back in (2) gives the solution as\begin {equation} \fbox {$u\left ( r,\theta \right ) =\frac {r}{4}\cos \theta -\frac {r^3}{4}\cos 3\theta $}\tag {3} \end {equation} This solution is now converted to \(xy\) using the formula\begin {align*} r^{n}\cos n\theta & =\sum _{\substack {k=0\\even}}^{n}\begin {pmatrix} n\\ k \end {pmatrix} x^{n-k}\left ( -1\right ) ^{\frac {k}{2}}y^{k}\\ & =\sum _{\substack {k=0\\even}}^{n}\frac {n!}{k!\left ( n-k\right ) !}x^{n-k}\left ( -1\right ) ^{\frac {k}{2}}y^{k} \end {align*}
For \(n=1\) the above gives\begin {align} r\cos \theta & =\frac {1!}{0!\left ( 1-0\right ) !}x^{1-0}\left ( -1\right ) ^{0}y^{0}\nonumber \\ & =x\tag {4} \end {align}
And for \(n=3\)\begin {align} r^{3}\cos 3\theta & =\frac {3!}{0!\left ( 3-0\right ) !}x^{3-0}\left ( -1\right ) ^{0}y^{0}+\frac {3!}{2!\left ( 3-2\right ) !}x^{3-2}\left ( -1\right ) ^{1}y^{2}\nonumber \\ & =x^{3}-3xy^{2}\tag {5} \end {align}
Using (4,5) in (3) gives the solution in \(x,y\)\begin {equation} \fbox {$u\left ( x,y\right ) =\frac {1}{4}x-\frac {1}{4}\left ( x^3-3xy^2\right ) $}\tag {6} \end {equation} This is now verified that is satisfies the PDE \(u_{xx}+u_{yy}=0\).\begin {align*} \frac {\partial u}{\partial x} & =\frac {1}{4}-\frac {1}{4}\left ( 3x^{2}-3y^{2}\right ) \\ \frac {\partial ^{2}u}{\partial x^{2}} & =-\frac {6}{4}x \end {align*}
And\begin {align*} \frac {\partial u}{\partial y} & =\frac {6}{4}xy\\ \frac {\partial ^{2}u}{\partial y^{2}} & =\frac {6}{4}x \end {align*}
Therefore \(\frac {\partial ^{2}u}{\partial x^{2}}+\frac {\partial ^{2}u}{\partial y^{2}}=0\).
Now the boundary conditions \(u\left ( x,y\right ) =xy^{2}\) are also verified. This condition applies when \(x^{2}+y^{2}=1\) or \(y^{2}=1-x^{2}\). Substituting this into (6) gives\[ u\left ( x,y\right ) _{@D}=\frac {1}{4}x-\frac {1}{4}\left ( x^{3}-3x\overset {y2}{\overbrace {\left ( 1-x^{2}\right ) }}\right ) \] Simplifying gives\begin {align*} u\left ( x,y\right ) _{@D} & =\frac {1}{4}x-\frac {1}{4}\left ( x^{3}-\left ( 3x-3x^{3}\right ) \right ) \\ & =\frac {1}{4}x-\frac {1}{4}x^{3}+\frac {1}{4}\left ( 3x-3x^{3}\right ) \\ & =\frac {1}{4}x-\frac {1}{4}x^{3}+\frac {3}{4}x-\frac {3}{4}x^{3}\\ & =x-x^{3}\\ & =x\left ( 1-x^{2}\right ) \\ & =xy^{2} \end {align*}
Verified. This is 3D plot of the solution
This is a contour plot
____________________________________________________________________________________
This is problem 2.5.5 part (c) from Richard Haberman applied partial differential equations, 5th edition
Solve Laplace equation \[ u_{rr} + \frac {1}{r} u_r + \frac {1}{r^2} u_{\theta \theta } = 0 \] Inside quarter circle of radius 1 with \(0 \leq \theta \leq \frac {\pi }{2}\) and \(0 \leq r \leq 1\), with following boundary conditions \begin {align*} u(r,0) &= 0 \\ u(r,\frac {\pi }{2}) &= 0 \\ \frac {\partial u}{\partial r}(1,\theta ) &= f(\theta ) \\ \end {align*}
Mathematica ✗
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + (1*D[u[r, theta], r]*1*D[u[r, theta], {theta, 2}])/(r*r^2) == 0; bc = {Derivative[1, 0][u][1, theta] == f[theta], u[r, Pi/2] == 0, u[r, 0] == 0}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}, Assumptions -> {0 <= r <= 1 && 0 <= theta <= Pi/2}], 60*10]];
Failed
Maple ✓
restart; interface(showassumed=0); pde := diff(u(r,theta),r$2)+ 1/r*diff(u(r,theta),r)+1/r^2*diff(u(r,theta),theta$2)=0; bc := u(r,0)=0,u(r,Pi/2)=0,D[1](u)(1,theta)=f(theta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta),HINT=boundedseries(r=0)) assuming 0<=theta,theta<=Pi/2,0<=r,r<=1),output='realtime'));
\[u \left (r , \theta \right ) = \moverset {\infty }{\munderset {n =1}{\sum }}\frac {2 r^{2 n} \left (\int _{0}^{\frac {\pi }{2}}f \left (\theta \right ) \sin \left (2 n \theta \right )d \theta \right ) \sin \left (2 n \theta \right )}{\pi n}\]
Hand solution
The Laplace PDE in polar coordinates is \begin {equation} r^{2}\frac {\partial ^{2}u}{\partial r^{2}}+r\frac {\partial u}{\partial r}+\frac {\partial ^{2}u}{\partial \theta ^{2}}=0\tag {A} \end {equation} With boundary conditions \begin {align} u\left ( r,0\right ) & =0\nonumber \\ u\left ( r,\frac {\pi }{2}\right ) & =0\tag {B}\\ u\left ( 1,\theta \right ) & =f\left ( \theta \right ) \nonumber \end {align}
Assuming the solution can be written as \[ u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) \] And substituting this assumed solution back into the (A) gives\[ r^{2}R^{\prime \prime }\Theta +rR^{\prime }\Theta +R\Theta ^{\prime \prime }=0 \] Dividing the above by \(R\Theta \neq 0\) gives\begin {align*} r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}+\frac {\Theta ^{\prime \prime }}{\Theta } & =0\\ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R} & =-\frac {\Theta ^{\prime \prime }}{\Theta } \end {align*}
Since each side depends on different independent variable and they are equal, they must be equal to same constant. say \(\lambda \). \[ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}=-\frac {\Theta ^{\prime \prime }}{\Theta }=\lambda \] This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to each ODE. This gives\begin {align} \Theta ^{\prime \prime }+\lambda \Theta & =0\nonumber \\ \Theta \left ( 0\right ) & =0\tag {1}\\ \Theta \left ( \frac {\pi }{2}\right ) & =0\nonumber \end {align}
And\begin {align} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R & =0\tag {2}\\ \left \vert R\left ( 0\right ) \right \vert & <\infty \nonumber \end {align}
Starting with (1). Consider the Case \(\lambda <0\). The solution in this case will be \[ \Theta =A\cosh \left ( \sqrt {\lambda }\theta \right ) +B\sinh \left ( \sqrt {\lambda }\theta \right ) \] Applying first B.C. gives \(A=0\). The solution becomes \(\Theta =B\sinh \left ( \sqrt {\lambda }\theta \right ) \). Applying second B.C. gives \[ 0=B\sinh \left ( \sqrt {\lambda }\frac {\pi }{2}\right ) \] But \(\sinh \) is zero only when \(\sqrt {\lambda }\frac {\pi }{2}=0\) which is not the case here. Therefore \(B=0\) and hence trivial solution. Hence \(\lambda <0\) is not an eigenvalue.
Case \(\lambda =0\) The ODE becomes \(\Theta ^{\prime \prime }=0\) with solution \(\Theta =A\theta +B\). First B.C. gives \(0=B\). The solution becomes \(\Theta =A\theta \). Second B.C. gives \(0=A\frac {\pi }{2}\), hence \(A=0\) and trivial solution. Therefore \(\lambda =0\) is not an eigenvalue.
Case \(\lambda >0\) The ODE becomes \(\Theta ^{\prime \prime }+\lambda \Theta =0\) with solution \[ \Theta =A\cos \left ( \sqrt {\lambda }\theta \right ) +B\sin \left ( \sqrt {\lambda }\theta \right ) \] The first B.C. gives \(0=A\). The solution becomes \[ \Theta =B\sin \left ( \sqrt {\lambda }\theta \right ) \] And the second B.C. gives \[ 0=B\sin \left ( \sqrt {\lambda }\frac {\pi }{2}\right ) \] For non-trivial solution \(\sin \left ( \sqrt {\lambda }\frac {\pi }{2}\right ) =0\) or \(\sqrt {\lambda }\frac {\pi }{2}=n\pi \) for \(n=1,2,3,\cdots \). Hence the eigenvalues are\begin {align*} \sqrt {\lambda _{n}} & =2n\\ \lambda _{n} & =4n^{2}\qquad n=1,2,3,\cdots \end {align*}
And the eigenfunctions are \begin {equation} \Theta _{n}\left ( \theta \right ) =B_{n}\sin \left ( 2n\theta \right ) \qquad n=1,2,3,\cdots \tag {3} \end {equation} Now the \(R\) ODE is solved. There is one case to consider, which is \(\lambda >0\) based on the above. The ODE is\begin {align*} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda _{n}R & =0\\ r^{2}R^{\prime \prime }+rR^{\prime }-4n^{2}R & =0\qquad n=1,2,3,\cdots \end {align*}
This is Euler ODE. Let \(R\left ( r\right ) =r^{p}\). Then \(R^{\prime }=pr^{p-1}\) and \(R^{\prime \prime }=p\left ( p-1\right ) r^{p-2}\). This gives\begin {align*} r^{2}\left ( p\left ( p-1\right ) r^{p-2}\right ) +r\left ( pr^{p-1}\right ) -4n^{2}r^{p} & =0\\ \left ( \left ( p^{2}-p\right ) r^{p}\right ) +pr^{p}-4n^{2}r^{p} & =0\\ r^{p}p^{2}-pr^{p}+pr^{p}-4n^{2}r^{p} & =0\\ p^{2}-4n^{2} & =0\\ p & =\pm 2n \end {align*}
Hence the solution is\[ R\left ( r\right ) =Cr^{2n}+D\frac {1}{r^{2n}}\] Applying the condition that \(\left \vert R\left ( 0\right ) \right \vert <\infty \) implies \(D=0\), and the solution becomes\begin {equation} R_{n}\left ( r\right ) =C_{n}r^{2n}\qquad n=1,2,3,\cdots \tag {4} \end {equation} Using (3,4) the solution \(u_{n}\left ( r,\theta \right ) \) is\begin {align*} u_{n}\left ( r,\theta \right ) & =R_{n}\Theta _{n}\\ & =C_{n}r^{2n}B_{n}\sin \left ( 2n\theta \right ) \\ & =B_{n}r^{2n}\sin \left ( 2n\theta \right ) \end {align*}
Where \(C_{n}B_{n}\) was combined into one constant \(B_{n}\). (No need to introduce new symbol). The final solution is\begin {align*} u\left ( r,\theta \right ) & =\sum _{n=1}^{\infty }u_{n}\left ( r,\theta \right ) \\ & =\sum _{n=1}^{\infty }B_{n}r^{2n}\sin \left ( 2n\theta \right ) \end {align*}
Now the nonhomogeneous condition is applied to find \(B_{n}\).\[ \frac {\partial }{\partial r}u\left ( r,\theta \right ) =\sum _{n=1}^{\infty }B_{n}\left ( 2n\right ) r^{2n-1}\sin \left ( 2n\theta \right ) \] Hence \(\frac {\partial }{\partial r}u\left ( 1,\theta \right ) =f\left ( \theta \right ) \) becomes\[ f\left ( \theta \right ) =\sum _{n=1}^{\infty }2B_{n}n\sin \left ( 2n\theta \right ) \] Multiplying by \(\sin \left ( 2m\theta \right ) \) and integrating gives\begin {align} \int _{0}^{\frac {\pi }{2}}f\left ( \theta \right ) \sin \left ( 2m\theta \right ) d\theta & =\int _{0}^{\frac {\pi }{2}}\sin \left ( 2m\theta \right ) \sum _{n=1}^{\infty }2B_{n}n\sin \left ( 2n\theta \right ) d\theta \nonumber \\ & =\sum _{n=1}^{\infty }2nB_{n}\int _{0}^{\frac {\pi }{2}}\sin \left ( 2m\theta \right ) \sin \left ( 2n\theta \right ) d\theta \tag {5} \end {align}
When \(n=m\) then\begin {align*} \int _{0}^{\frac {\pi }{2}}\sin \left ( 2m\theta \right ) \sin \left ( 2n\theta \right ) d\theta & =\int _{0}^{\frac {\pi }{2}}\sin ^{2}\left ( 2n\theta \right ) d\theta \\ & =\int _{0}^{\frac {\pi }{2}}\left ( \frac {1}{2}-\frac {1}{2}\cos 4n\theta \right ) d\theta \\ & =\frac {1}{2}\left [ \theta \right ] _{0}^{\frac {\pi }{2}}-\frac {1}{2}\left [ \frac {\sin 4n\theta }{4n}\right ] _{0}^{\frac {\pi }{2}}\\ & =\frac {\pi }{4}-\left ( \frac {1}{8n}\left ( \sin \frac {4n}{2}\pi \right ) -\sin \left ( 0\right ) \right ) \end {align*}
And since \(n\) is integer, then \(\sin \frac {4n}{2}\pi =\sin 2n\pi =0\) and the above becomes \(\frac {\pi }{4}\).
Now for the case when \(n\neq m\) using \(\sin A\sin B=\frac {1}{2}\left ( \cos \left ( A-B\right ) -\cos \left ( A+B\right ) \right ) \) then\begin {align*} \int _{0}^{\frac {\pi }{2}}\sin \left ( 2m\theta \right ) \sin \left ( 2n\theta \right ) d\theta & =\int _{0}^{\frac {\pi }{2}}\frac {1}{2}\left ( \cos \left ( 2m\theta -2n\theta \right ) -\cos \left ( 2m\theta +2n\theta \right ) \right ) d\theta \\ & =\frac {1}{2}\int _{0}^{\frac {\pi }{2}}\cos \left ( 2m\theta -2n\theta \right ) d\theta -\frac {1}{2}\int _{0}^{\frac {\pi }{2}}\cos \left ( 2m\theta +2n\theta \right ) d\theta \\ & =\frac {1}{2}\int _{0}^{\frac {\pi }{2}}\cos \left ( \left ( 2m-2n\right ) \theta \right ) d\theta -\frac {1}{2}\int _{0}^{\frac {\pi }{2}}\cos \left ( \left ( 2m+2n\right ) \theta \right ) d\theta \\ & =\frac {1}{2}\left [ \frac {\sin \left ( \left ( 2m-2n\right ) \theta \right ) }{\left ( 2m-2n\right ) }\right ] _{0}^{\frac {\pi }{2}}-\frac {1}{2}\left [ \frac {\sin \left ( \left ( 2m+2n\right ) \theta \right ) }{\left ( 2m+2n\right ) }\right ] _{0}^{\frac {\pi }{2}}\\ & =\frac {1}{4\left ( m-n\right ) }\left [ \sin \left ( \left ( 2m-2n\right ) \theta \right ) \right ] _{0}^{\frac {\pi }{2}}-\frac {1}{4\left ( m+n\right ) }\left [ \sin \left ( \left ( 2m+2n\right ) \theta \right ) \right ] _{0}^{\frac {\pi }{2}}\\ & =\frac {1}{4\left ( m-n\right ) }\left [ \sin \left ( \left ( 2m-2n\right ) \frac {\pi }{2}\right ) -0\right ] -\frac {1}{4\left ( m+n\right ) }\left [ \sin \left ( \left ( 2m+2n\right ) \frac {\pi }{2}\right ) -0\right ] \end {align*}
Since \(2m-2n\frac {\pi }{2}=\pi \left ( m-n\right ) \) which is integer multiple of \(\pi \) and also \(\left ( 2m+2n\right ) \frac {\pi }{2}\) is integer multiple of \(\pi \) then the whole term above becomes zero. Therefore (5) becomes\[ \int _{0}^{\frac {\pi }{2}}f\left ( \theta \right ) \sin \left ( 2m\theta \right ) d\theta =2mB_{m}\frac {\pi }{4}\] Hence\[ B_{n}=\frac {2}{\pi n}\int _{0}^{\frac {\pi }{2}}f\left ( \theta \right ) \sin \left ( 2n\theta \right ) d\theta \] Summary: the final solution is\[ u\left ( r,\theta \right ) =\frac {2}{\pi }\sum _{n=1}^{\infty }\frac {1}{n}\left [ \int _{0}^{\frac {\pi }{2}}f\left ( \theta \right ) \sin \left ( 2n\theta \right ) d\theta \right ] \left ( r^{2n}\sin \left ( 2n\theta \right ) \right ) \]
____________________________________________________________________________________
Solve Laplace equation \[ u_{rr} + \frac {1}{r }u_r + \frac {1}{r^2} u_{\theta \theta } = 0 \] Inside semi-circle of radius 1 with \(0 \leq \theta \leq \pi \) and \(0 \leq r \leq 1\), with following boundary conditions \begin {align*} u(r,0) &= 0 \\ u(r,\pi ) &= 0 \\ u(1,\theta ) &= f(\theta ) \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + (1/r) D[u[r, theta], r] + 1/r^2*D[u[r, theta], {theta, 2}] == 0; bc = {u[r, 0] == 0, u[r, Pi] == 0, u[1, theta] == f[theta]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}, Assumptions -> {0 < r <= 1 && 0 < theta < Pi}], 60*10]];
\[\left \{\left \{u(r,\theta )\to \underset {K[1]=1}{\overset {\infty }{\sum }}\sqrt {\frac {2}{\pi }} r^{K[1]} \left (\int _0^{\pi } \sqrt {\frac {2}{\pi }} f(\theta ) \sin (\theta K[1]) \, d\theta \right ) \sin (\theta K[1])\right \}\right \}\]
Maple ✓
restart; pde := diff(u(r,theta),r$2)+1/r*diff(u(r,theta),r)+1/r^2*diff(u(r,theta),theta$2)=0; bc := u(r,0)=0,u(r,Pi)=0,u(1,theta)=f(theta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta),HINT=boundedseries) assuming 0<r,r<1,0<theta,theta<Pi),output='realtime'));
\[u \left (r , \theta \right ) = \moverset {\infty }{\munderset {n =1}{\sum }}\frac {2 r^{n} \left (\int _{0}^{\pi }f \left (\theta \right ) \sin \left (n \theta \right )d \theta \right ) \sin \left (n \theta \right )}{\pi }\]
____________________________________________________________________________________
This is problem 2.5.8 part (b) from Richard Haberman applied partial differential equations, 5th edition
Solve Laplace equation \(\nabla ^2 u(r,\theta )=0\) or \[ u_{rr} + \frac {1}{r } u_r +\frac {1}{r^2} u_{\theta \theta } =0 \] Inside circular annulus \(a<r<b\) subject to the following boundary conditions \begin {align*} \frac {\partial u}{\partial r}(a,\theta ) &= 0 \\ u(b,\theta ) &= g(\theta ) \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + 1/r*D[u[r, theta], r] + 1/r^2*D[u[r, theta], {theta, 2}] == 0; bc = {Derivative[1, 0][u][a, theta] == 0, u[b, theta] == g[theta]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}, Assumptions -> a < r < b], 60*10]];
\[\left \{\left \{u(r,\theta )\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {\int _0^{2 \pi } g(K[2]) \, dK[2]}{2 \pi }+\underset {K[1]=1}{\overset {\infty }{\sum }}\left (\cos (\theta K[1]) \left (\frac {a^{2 K[1]} b^{K[1]} \left (\int _0^{2 \pi } \frac {\cos (K[1] K[2]) g(K[2])}{\pi } \, dK[2]\right ) r^{-K[1]}}{a^{2 K[1]}+b^{2 K[1]}}+\frac {b^{K[1]} \left (\int _0^{2 \pi } \frac {\cos (K[1] K[2]) g(K[2])}{\pi } \, dK[2]\right ) r^{K[1]}}{a^{2 K[1]}+b^{2 K[1]}}\right )+\left (\frac {a^{2 K[1]} b^{K[1]} \left (\int _0^{2 \pi } \frac {g(K[2]) \sin (K[1] K[2])}{\pi } \, dK[2]\right ) r^{-K[1]}}{a^{2 K[1]}+b^{2 K[1]}}+\frac {b^{K[1]} \left (\int _0^{2 \pi } \frac {g(K[2]) \sin (K[1] K[2])}{\pi } \, dK[2]\right ) r^{K[1]}}{a^{2 K[1]}+b^{2 K[1]}}\right ) \sin (\theta K[1])\right ) & a\leq r\leq b \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart; interface(showassumed=0); pde := diff(u(r,theta),r$2)+1/r*diff(u(r,theta),r)+1/r^2*diff(u(r,theta),theta$2)=0; bc:=D[1](u)(a,theta)=0,u(b,theta)=g(theta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta)) assuming a<r,r<b),output='realtime'));
\[u \left (r , \theta \right ) = g \left (\theta \right )-\mathcal {F}^{-1}\left (\frac {a^{s} b^{-s} \mathcal {F}\left (g \left (\theta \right ), \theta , s\right )}{a^{s} b^{-s}+a^{-s} b^{s}}, s , \theta \right )+\mathcal {F}^{-1}\left (\frac {a^{s} r^{-s} \mathcal {F}\left (g \left (\theta \right ), \theta , s\right )}{a^{s} b^{-s}+a^{-s} b^{s}}, s , \theta \right )-\mathcal {F}^{-1}\left (\frac {a^{-s} b^{s} \mathcal {F}\left (g \left (\theta \right ), \theta , s\right )}{a^{s} b^{-s}+a^{-s} b^{s}}, s , \theta \right )+\mathcal {F}^{-1}\left (\frac {a^{-s} r^{s} \mathcal {F}\left (g \left (\theta \right ), \theta , s\right )}{a^{s} b^{-s}+a^{-s} b^{s}}, s , \theta \right )\]
Hand solution
The Laplace PDE in polar coordinates is \begin {equation} r^{2}\frac {\partial ^{2}u}{\partial r^{2}}+r\frac {\partial u}{\partial r}+\frac {\partial ^{2}u}{\partial \theta ^{2}}=0\tag {A} \end {equation} With\begin {align} \frac {\partial u}{\partial r}\left ( a,\theta \right ) & =0\nonumber \\ u\left ( b,\theta \right ) & =g\left ( \theta \right ) \tag {B} \end {align}
Assuming the solution can be written as \[ u\left ( r,\theta \right ) =R\left ( r\right ) \Theta \left ( \theta \right ) \] And substituting this assumed solution back into the (A) gives\[ r^{2}R^{\prime \prime }\Theta +rR^{\prime }\Theta +R\Theta ^{\prime \prime }=0 \] Dividing the above by \(R\Theta \) gives\begin {align*} r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}+\frac {\Theta ^{\prime \prime }}{\Theta } & =0\\ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R} & =-\frac {\Theta ^{\prime \prime }}{\Theta } \end {align*}
Since each side depends on different independent variable and they are equal, they must be equal to same constant. say \(\lambda \). \[ r^{2}\frac {R^{\prime \prime }}{R}+r\frac {R^{\prime }}{R}=-\frac {\Theta ^{\prime \prime }}{\Theta }=\lambda \] This results in the following two ODE’s. The boundaries conditions in (B) are also transferred to each ODE. This results in\begin {align} \Theta ^{\prime \prime }+\lambda \Theta & =0\tag {1}\\ \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \nonumber \\ \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \nonumber \end {align}
And\begin {align} r^{2}R^{\prime \prime }+rR^{\prime }-\lambda R & =0\tag {2}\\ R^{\prime }\left ( a\right ) & =0\nonumber \end {align}
Starting with (1)
Case \(\lambda <0\) The solution is\[ \Theta \left ( \theta \right ) =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) +B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) \] First B.C. gives\begin {align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ A\cosh \left ( -\sqrt {\left \vert \lambda \right \vert }\pi \right ) +B\sinh \left ( -\sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) +B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) -B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) +B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ 2B\sinh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =0 \end {align*}
But \(\sinh =0\) only at zero and \(\lambda \neq 0\), hence \(B=0\) and the solution becomes\begin {align*} \Theta \left ( \theta \right ) & =A\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) \\ \Theta ^{\prime }\left ( \theta \right ) & =A\sqrt {\lambda }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\theta \right ) \end {align*}
Applying the second B.C. gives\begin {align*} \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \\ A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( -\sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) \\ 2A\sqrt {\left \vert \lambda \right \vert }\cosh \left ( \sqrt {\left \vert \lambda \right \vert }\pi \right ) & =0 \end {align*}
But \(\cosh \) is never zero, hence \(A=0\). Therefore trivial solution and \(\lambda <0\) is not an eigenvalue.
Case \(\lambda =0\) The solution is \(\Theta =A\theta +B\). Applying the first B.C. gives\begin {align*} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \\ -A\pi +B & =\pi A+B\\ 2\pi A & =0\\ A & =0 \end {align*}
And the solution becomes \(\Theta =B_{0}\). A constant. Hence \(\lambda =0\) is an eigenvalue.
Case \(\lambda >0\)
The solution becomes\begin {align*} \Theta & =A\cos \left ( \sqrt {\lambda }\theta \right ) +B\sin \left ( \sqrt {\lambda }\theta \right ) \\ \Theta ^{\prime } & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\theta \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\theta \right ) \end {align*}
Applying first B.C. gives\begin {align} \Theta \left ( -\pi \right ) & =\Theta \left ( \pi \right ) \nonumber \\ A\cos \left ( -\sqrt {\lambda }\pi \right ) +B\sin \left ( -\sqrt {\lambda }\pi \right ) & =A\cos \left ( \sqrt {\lambda }\pi \right ) +B\sin \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ A\cos \left ( \sqrt {\lambda }\pi \right ) -B\sin \left ( \sqrt {\lambda }\pi \right ) & =A\cos \left ( \sqrt {\lambda }\pi \right ) +B\sin \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ 2B\sin \left ( \sqrt {\lambda }\pi \right ) & =0 \tag {3} \end {align}
Applying second B.C. gives\begin {align} \Theta ^{\prime }\left ( -\pi \right ) & =\Theta ^{\prime }\left ( \pi \right ) \nonumber \\ -A\sqrt {\lambda }\sin \left ( -\sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( -\sqrt {\lambda }\pi \right ) & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\pi \right ) & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) +B\sqrt {\lambda }\cos \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) & =-A\sqrt {\lambda }\sin \left ( \sqrt {\lambda }\pi \right ) \nonumber \\ 2A\sin \left ( \sqrt {\lambda }\pi \right ) & =0 \tag {4} \end {align}
Equations (3,4) can be both zero only if \(A=B=0\) which gives trivial solution, or when \(\sin \left ( \sqrt {\lambda }\pi \right ) =0\). Therefore taking \(\sin \left ( \sqrt {\lambda }\pi \right ) =0\) gives a non-trivial solution. Hence\begin {align*} \sqrt {\lambda }\pi & =n\pi \qquad n=1,2,3,\cdots \\ \lambda _{n} & =n^{2}\qquad n=1,2,3,\cdots \end {align*}
Hence the solution for \(\Theta \) is\begin {equation} \Theta =A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \tag {5} \end {equation} Now the \(R\) equation is solved
The case for \(\lambda =0\) gives\begin {align*} r^{2}R^{\prime \prime }+rR^{\prime } & =0\\ R^{\prime \prime }+\frac {1}{r}R^{\prime } & =0\qquad r\neq 0 \end {align*}
As was done in last problem, the solution to this is\[ R\left ( r\right ) =A\ln \left \vert r\right \vert +C \] Since \(r>0\) no need to keep worrying about \(\left \vert r\right \vert \) and is removed for simplicity. Applying the B.C. gives\[ R^{\prime }=A\frac {1}{r}\] Evaluating at \(r=a\) gives\[ 0=A\frac {1}{a}\] Hence \(A=0\), and the solution becomes\[ R\left ( r\right ) =C_{0}\] Which is a constant.
Case \(\lambda >0\) The ODE in this case is \[ r^{2}R^{\prime \prime }+rR^{\prime }-n^{2}R=0\qquad n=1,2,3,\cdots \] Let \(R=r^{p}\), the above becomes\begin {align*} r^{2}p\left ( p-1\right ) r^{p-2}+rpr^{p-1}-n^{2}r^{p} & =0\\ p\left ( p-1\right ) r^{p}+pr^{p}-n^{2}r^{p} & =0\\ p\left ( p-1\right ) +p-n^{2} & =0\\ p^{2} & =n^{2}\\ p & =\pm n \end {align*}
Hence the solution is\[ R_{n}\left ( r\right ) =Cr^{n}+D\frac {1}{r^{n}}\qquad n=1,2,3,\cdots \] Applying the boundary condition \(R^{\prime }\left ( a\right ) =0\) gives\begin {align*} R_{n}^{\prime }\left ( r\right ) & =nC_{n}r^{n-1}-nD_{n}\frac {1}{r^{n+1}}\\ 0 & =R_{n}^{\prime }\left ( a\right ) \\ & =nC_{n}a^{n-1}-nD_{n}\frac {1}{a^{n+1}}\\ & =nC_{n}a^{2n}-nD_{n}\\ & =C_{n}a^{2n}-D_{n}\\ D_{n} & =C_{n}a^{2n} \end {align*}
The solution becomes\begin {align*} R_{n}\left ( r\right ) & =C_{n}r^{n}+C_{n}a^{2n}\frac {1}{r^{n}}\qquad n=1,2,3,\cdots \\ & =C_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \end {align*}
Hence the complete solution for \(R\left ( r\right ) \) is\begin {equation} R\left ( r\right ) =C_{0}+\sum _{n=1}^{\infty }C_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \tag {6} \end {equation} Using (5),(6) gives\begin {align*} u_{n}\left ( r,\theta \right ) & =R_{n}\Theta _{n}\\ u\left ( r,\theta \right ) & =\left [ C_{0}+\sum _{n=1}^{\infty }C_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \right ] \left [ A_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) +B_{n}\sin \left ( n\theta \right ) \right ] \\ & =D_{0}+\sum _{n=1}^{\infty }A_{n}\cos \left ( n\theta \right ) C_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) +\sum _{n=1}^{\infty }B_{n}\sin \left ( n\theta \right ) C_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \end {align*}
Where \(D_{0}=C_{0}A_{0}\). To simplify more, \(A_{n}C_{n}\) is combined to \(A_{n}\) and \(B_{n}C_{n}\) is combined to \(B_{n}\). The full solution is\[ u\left ( r,\theta \right ) =D_{0}+\sum _{n=1}^{\infty }A_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }B_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \sin \left ( n\theta \right ) \] The final nonhomogeneous B.C. is applied.\begin {align*} u\left ( b,\theta \right ) & =g\left ( \theta \right ) \\ g\left ( \theta \right ) & =D_{0}+\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \sin \left ( n\theta \right ) \end {align*}
For \(n=0\), integrating both sides give\begin {align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}d\theta \\ D_{0} & =\frac {1}{2\pi }\int _{-\pi }^{\pi }g\left ( \theta \right ) d\theta \end {align*}
For \(n>0\), multiplying both sides by \(\cos \left ( m\theta \right ) \) and integrating gives\begin {align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\cos \left ( m\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \cos \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \end {align*}
Hence\begin {align} \int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\cos \left ( m\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \tag {7} \end {align}
But \begin {align*} \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta & =\pi \qquad n=m\neq 0\\ \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta & =0\qquad n\neq m \end {align*}
And\[ \int _{-\pi }^{\pi }\cos \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta =0\qquad \] And\[ \int _{-\pi }^{\pi }D_{0}\cos \left ( m\theta \right ) d\theta =0 \] Then (7) becomes\begin {align} \int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta & =\pi A_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \nonumber \\ A_{n} & =\frac {1}{\pi }\frac {\int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta }{b^{n}+\frac {a^{2n}}{b^{n}}} \tag {8} \end {align}
Again, multiplying both sides by \(\sin \left ( m\theta \right ) \) and integrating gives\begin {align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\sin \left ( m\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \sin \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \\ & +\int _{-\pi }^{\pi }\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \end {align*}
Hence\begin {align} \int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( m\theta \right ) d\theta & =\int _{-\pi }^{\pi }D_{0}\sin \left ( m\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }A_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta \nonumber \\ & +\sum _{n=1}^{\infty }B_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta \tag {9} \end {align}
But \begin {align*} \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta & =\pi \qquad n=m\neq 0\\ \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \sin \left ( n\theta \right ) d\theta & =0\qquad n\neq m \end {align*}
And\[ \int _{-\pi }^{\pi }\sin \left ( m\theta \right ) \cos \left ( n\theta \right ) d\theta =0 \] And\[ \int _{-\pi }^{\pi }D_{0}\sin \left ( m\theta \right ) d\theta =0 \] Then (9) becomes\begin {align*} \int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta & =\pi B_{n}\left ( b^{n}+\frac {a^{2n}}{b^{n}}\right ) \\ B_{n} & =\frac {1}{\pi }\frac {\int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta }{b^{n}+\frac {a^{2n}}{b^{n}}} \end {align*}
This complete the solution. Summary\begin {align*} u\left ( r,\theta \right ) & =D_{0}+\sum _{n=1}^{\infty }A_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \cos \left ( n\theta \right ) +\sum _{n=1}^{\infty }B_{n}\left ( r^{n}+\frac {a^{2n}}{r^{n}}\right ) \sin \left ( n\theta \right ) \\ D_{0} & =\frac {1}{2\pi }\int _{-\pi }^{\pi }g\left ( \theta \right ) d\theta \\ A_{n} & =\frac {1}{\pi }\frac {\int _{-\pi }^{\pi }g\left ( \theta \right ) \cos \left ( n\theta \right ) d\theta }{b^{n}+\frac {a^{2n}}{b^{n}}}\\ B_{n} & =\frac {1}{\pi }\frac {\int _{-\pi }^{\pi }g\left ( \theta \right ) \sin \left ( n\theta \right ) d\theta }{b^{n}+\frac {a^{2n}}{b^{n}}} \end {align*}
____________________________________________________________________________________
Solve Laplace equation \[ u_{rr} + \frac {1}{r } u_r + \frac {1}{r^2} u_{\theta \theta } =0 \]
Inside circular annulus \(1<r<2\) subject to the following boundary conditions \begin {align*} u(1,\theta ) &= 0 \\ u(2,\theta ) &= \sin \theta \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + (1*D[u[r, theta], r])/r + (1*D[u[r, theta], {theta, 2}])/r^2 == 0; bc = {u[1, theta] == 0, u[2, theta] == Sin[theta]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}], 60*10]];
\[\left \{\left \{u(r,\theta )\to \begin {array}{cc} \{ & \begin {array}{cc} \frac {2 \left (r^2-1\right ) \sin (\theta )}{3 r} & 1\leq r\leq 2 \\ \text {Indeterminate} & \text {True} \\\end {array} \\\end {array}\right \}\right \}\]
Maple ✓
restart; pde := diff(u(r,theta),r$2)+1/r*diff(u(r,theta),r)+1/r^2*diff(u(r,theta),theta$2)=0; bc := u(1,theta)=0,u(2,theta)=sin(theta); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde,bc],u(r,theta))),output='realtime'));
\[u \left (r , \theta \right ) = \frac {2 \left (r^{2}-1\right ) \sin \left (\theta \right )}{3 r}\]
____________________________________________________________________________________
Solve Laplace equation in polar coordinates outside a disk
Solve for \(u\left ( r,\theta \right ) \) \begin {align*} u_{rr}+\frac {1}{r} u_r +\frac {1}{r^2} u_{\theta \theta } & =0\\ a & \leq r \\ 0 & <\theta \leq 2\pi \end {align*}
Boundary conditions \begin {align*} u\left ( a,\theta \right ) & =f\left ( \theta \right ) \\ \left \vert u\left ( 0,\theta \right ) \right \vert & <\infty \\ u\left ( r,0\right ) & =u\left ( r,2\pi \right ) \\ \frac {\partial u}{\partial \theta }\left ( r,0\right ) & =\frac {\partial u}{\partial \theta }\left ( r,2\pi \right ) \end {align*}
Mathematica ✓
ClearAll["Global`*"]; pde = D[u[r, theta], {r, 2}] + 1/r*D[u[r, theta], r] + 1/r^2*D[u[r, theta], {theta, 2}] == 0; bc = {u[a, theta] == f[theta], u[r, -Pi] == u[r, Pi], Derivative[0, 1][u][r, -Pi] == Derivative[0, 1][u][r, Pi]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}, Assumptions -> {a > 0, r > a}], 60*10]];
\[\left \{\left \{u(r,\theta )\to \underset {K[1]=1}{\overset {\infty }{\sum }}\frac {a^{-K[1]} r^{K[1]} \left (\cos (\theta K[1]) \int _{-\pi }^{\pi } \frac {\cos (\theta K[1]) f(\theta )}{\sqrt {\pi }} \, d\theta +\left (\int _{-\pi }^{\pi } \frac {f(\theta ) \sin (\theta K[1])}{\sqrt {\pi }} \, d\theta \right ) \sin (\theta K[1])\right )}{\sqrt {\pi }}+\frac {\int _{-\pi }^{\pi } \frac {f(\theta )}{\sqrt {2 \pi }} \, d\theta }{\sqrt {2 \pi }}\right \}\right \}\]
Maple ✓
restart; interface(showassumed=0); pde := diff(u(r, theta), r$2) + 1/r* diff(u(r,theta),r) + 1/r^2* diff(u(r, theta), theta$2) = 0; bc := u(a, theta) = f(theta), u(r, -Pi) = u(r, Pi), (D[2](u))(r, -Pi) = (D[2](u))(r, Pi); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(r, theta), HINT = boundedseries(r=infinity))),output='realtime'));
\[u \left (r , \theta \right ) = \frac {\int _{-\pi }^{\pi }f \left (\theta \right )d \theta +2 \pi \left (\moverset {\infty }{\munderset {n =1}{\sum }}\frac {\left (\left (\int _{-\pi }^{\pi }\cos \left (n \theta \right ) f \left (\theta \right )d \theta \right ) \cos \left (n \theta \right )+\left (\int _{-\pi }^{\pi }f \left (\theta \right ) \sin \left (n \theta \right )d \theta \right ) \sin \left (n \theta \right )\right ) \left (\frac {r}{a}\right )^{-n}}{\pi }\right )}{2 \pi }\]
____________________________________________________________________________________
Added January 13, 2020
Laplace PDE in polar coordinates outside a disk
Solve \(u_{xx}+u_{yy}=0\) outside disk \(x^{2}+y^{2}>1\) with boundary condition \(xy^{2}\) when \(x^{2}+y^{2}=a\). Where \(a=1\) in this problem. Express solution in \(x,y\)
The first step is to convert the boundary condition to polar coordinates. Since \(x=r\cos \theta ,y=r\sin \theta \), then at the boundary \(u\left ( r,\theta \right ) =r\cos \theta \left ( r\sin \theta \right ) ^{2}\). But \(r=1\) (the radius). Hence at the boundary, \(u\left ( 1,\theta \right ) =f\left ( \theta \right ) \) where \begin {align*} f\left ( \theta \right ) & =\cos \theta \sin ^{2}\theta \\ & =\cos \theta \left ( 1-\cos ^{2}\theta \right ) \\ & =\cos \theta -\cos ^{3}\theta \end {align*}
But \(\cos ^{3}\theta =\frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \). Therefore the above becomes\begin {align} f\left ( \theta \right ) & =\cos \theta -\left ( \frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \right ) \nonumber \\ & =\frac {1}{4}\cos \theta -\frac {1}{4}\cos 3\theta \tag {1} \end {align}
The above is also seen as the Fourier series of \(f\left ( \theta \right ) \). The PDE in polar coordinates is\[ u_{rr}+\frac {1}{r}u_{r}+\frac {1}{r^{2}}u_{\theta \theta }=0 \]
Mathematica ✓
ClearAll["Global`*"]; a=1; pde = Laplacian[u[r, theta], {r, theta}, "Polar"] == 0; f[theta_] := 1/4*(Cos[theta] - Cos[3*theta]); bc = {u[a, theta] == f[theta], u[r, -Pi] == u[r, Pi], Derivative[0, 1][u][r, -Pi] == Derivative[0, 1][u][r, Pi]}; sol = AbsoluteTiming[TimeConstrained[DSolve[{pde, bc}, u[r, theta], {r, theta}, Assumptions -> r > a], 60*10]];
\[\left \{\left \{u(r,\theta )\to \frac {1}{4} \left (r \cos (\theta )-r^3 \cos (3 \theta )\right )\right \}\right \}\]
Maple ✓
restart; f:=theta-> 1/4*(cos(theta) - cos(3*theta)); a:=1; pde := VectorCalculus:-Laplacian(u(r,theta),'polar'[r,theta]); bc := u(a, theta) = f(theta),u(r, -Pi) = u(r, Pi),(D[2](u))(r, -Pi) = (D[2](u))(r, Pi); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve([pde, bc], u(r, theta), HINT = boundedseries(r=infinity))),output='realtime')); sol:=simplify(subs(cos(theta)^3=trigsubs(cos(theta)^3)[2],expand(sol)),size);
\[u \left (r , \theta \right ) = \frac {r^{2} \cos \left (\theta \right )-\cos \left (3 \theta \right )}{4 r^{3}}\]
Hand solution
The first step is to convert the boundary condition to polar coordinates. Since \(x=r\cos \theta ,y=r\sin \theta \), then at the boundary \(u\left ( r,\theta \right ) =r\cos \theta \left ( r\sin \theta \right ) ^{2}\). But \(r=1\) (the radius). Hence at the boundary, \(u\left ( 1,\theta \right ) =f\left ( \theta \right ) \) where \begin {align*} f\left ( \theta \right ) & =\cos \theta \sin ^{2}\theta \\ & =\cos \theta \left ( 1-\cos ^{2}\theta \right ) \\ & =\cos \theta -\cos ^{3}\theta \end {align*}
But \(\cos ^{3}\theta =\frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \). Therefore the above becomes\begin {align} f\left ( \theta \right ) & =\cos \theta -\left ( \frac {3}{4}\cos \theta +\frac {1}{4}\cos 3\theta \right ) \nonumber \\ & =\frac {1}{4}\cos \theta -\frac {1}{4}\cos 3\theta \tag {1} \end {align}
The above is also seen as the Fourier series of \(f\left ( \theta \right ) \). The PDE in polar coordinates is\[ u_{rr}+\frac {1}{r}u_{r}+\frac {1}{r^{2}}u_{\theta \theta }=0 \] The solution is known to be\begin {equation} u\left ( r,\theta \right ) =\frac {c_{0}}{2}+\sum _{n=1}^{\infty }r^{-n}\left ( c_{n}\cos \left ( n\theta \right ) +k_{n}\sin \left ( n\theta \right ) \right ) \tag {2} \end {equation} Since the above solution is the same as \(f\left ( \theta \right ) \) when \(r=1\), then equating (2) when \(r=1\) to (1) gives\[ \frac {1}{4}\cos \theta -\frac {1}{4}\cos 3\theta =\frac {c_{0}}{2}+\sum _{n=1}^{\infty }\left ( c_{n}\cos \left ( n\theta \right ) +k_{n}\sin \left ( n\theta \right ) \right ) \] By comparing terms on both sides, this shows by inspection that\begin {align*} c_{0} & =0\\ c_{1} & =\frac {1}{4}\\ c_{3} & =\frac {-1}{4} \end {align*}
And all other \(c_{n},k_{n}\) are zero. Using the above result back in (2) gives the solution as \begin {align} u\left ( r,\theta \right ) & =\frac {r^{-1}}{4}\cos \theta -\frac {r^{-3}}{4}\cos 3\theta \nonumber \\ & =\frac {r^{2}\cos \left ( \theta \right ) -\cos \left ( 3\theta \right ) }{4r^{3}}\tag {3} \end {align}
This is 3D plot of the solution
This is a contour plot