2.14.5 Boussinesq \(u_{tt}-u_{xx}-u_{xxxx} - 3 (u^2)_{xx} = 0\)

problem number 107

Added December 27, 2018.

Taken from https://en.wikipedia.org/wiki/List_of_nonlinear_partial_differential_equations

Boussinesq. Solve for \(u(x,t)\) \[ u_{tt}-u_{xx}-u_{xxxx} - 3 (u^2)_{xx} = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  D[u[x, t], {t, 2}] - D[u[x, t], {x, 2}] - D[u[x, t], {x, 4}] - 3*D[u[x, t]^2, {x, 2}] == 0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, u[x, t], {x, t}], 60*10]];
 

\[\left \{\left \{u(x,t)\to \frac {1}{6} \left (-12 c_1{}^2 \tanh ^2(c_2 t+c_1 x+c_3)-1+8 c_1{}^2+\frac {c_2{}^2}{c_1{}^2}\right )\right \}\right \}\]

Maple

restart; 
pde := diff(u(x,t),t$2)-diff(u(x,t),x$2)-diff(u(x,t),x$4)- 3 * diff( u(x,t)^2, x$2)=0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,u(x,t))),output='realtime'));
 

\[u \left (x , t\right ) = -2 c_{2}^{2} \left (\tanh ^{2}\left (c_{3} t +c_{2} x +c_{1}\right )\right )+\frac {8 c_{2}^{4}-c_{2}^{2}+c_{3}^{2}}{6 c_{2}^{2}}\]

____________________________________________________________________________________