Added January 2, 2019.
Problem 2.2.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x +(y^2+b x^2 y-a^2-a b x^2)w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + b*x^2*y - a^2 - a*b*x)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {e^{\frac {b x^3}{3}} \left (\left (b x^2+y\right ) \text {HeunT}\left [a^2,-((a-2) b),0,0,b,x\right ]+\text {HeunTPrime}\left [a^2,-((a-2) b),0,0,b,x\right ]\right )}{y \text {HeunT}\left [a^2,-a b,0,0,-b,x\right ]+\text {HeunTPrime}\left [a^2,-a b,0,0,-b,x\right ]}\right )\right \}\right \}\] But it can’t solve it when assuming \(b>0\) which is strange.
Maple ✓
restart; pde := diff(w(x,y),x)+ (y^2+b*x^2*y-a^2-a*b*x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {3 \left (\left (b \,x^{2} \mathrm {csgn}\left (b \right )-b \,x^{2}-2 y \right ) \mathit {HT}\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right )-\frac {2 \,3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} \mathit {HT}^{\prime }\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right )}{3}\right ) \mathit {HT}\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right )}{-3 \left (\left (b \,x^{2} \mathrm {csgn}\left (b \right )-b \,x^{2}-2 y \right ) \mathit {HT}\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right )-\frac {2 \,3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} \mathit {HT}^{\prime }\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right )}{3}\right ) \mathit {HT}\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right ) \left (\int \frac {{\mathrm e}^{\frac {\sqrt {b^{2}}\, x^{3}}{3}}}{\mathit {HT}\left (-\frac {3^{\frac {2}{3}} a^{2}}{\left (b^{2}\right )^{\frac {1}{3}}}, -\frac {3 \left (a -1\right ) \sqrt {b^{2}}}{b}, 0, \frac {3^{\frac {2}{3}} \left (b^{2}\right )^{\frac {1}{6}} x}{3}\right )^{2}}d x \right )+6 \,{\mathrm e}^{\frac {\sqrt {b^{2}}\, x^{3}}{3}}}\right )\]
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x +(a x^2 y+b x^3+c) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^2*y + b*x^3 + c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {\sqrt [3]{3} b \operatorname {Gamma}\left (\frac {4}{3},\frac {a x^3}{3}\right )}{a^{4/3}}+\frac {c \operatorname {Gamma}\left (\frac {1}{3},\frac {a x^3}{3}\right )}{3^{2/3} \sqrt [3]{a}}+y e^{-\frac {a x^3}{3}}\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*x^2*y+b*x^3+c)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-\frac {3 \left (3^{\frac {1}{6}} \left (a c +b \right ) x \WhittakerM \left (\frac {1}{6}, \frac {2}{3}, \frac {a \,x^{3}}{3}\right ) {\mathrm e}^{\frac {a \,x^{3}}{6}}+\frac {4 \left (a \,x^{3}\right )^{\frac {1}{6}} \left (c x -y \right ) a}{3}\right ) {\mathrm e}^{-\frac {a \,x^{3}}{3}}}{4 \left (a \,x^{3}\right )^{\frac {1}{6}} a}\right )\]
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x +(a x^2 y+b y^3) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x^2*y + b*y^3)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {e^{\frac {2 a x^3}{3}}}{y^2}+\frac {i \left (\sqrt {3}+i\right ) b \operatorname {Gamma}\left (\frac {1}{3},-\frac {2 a x^3}{3}\right )}{\sqrt [3]{2} 3^{2/3} \sqrt [3]{a}}\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*x^2*y+b*y^3)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {2 \,2^{\frac {2}{3}} 3^{\frac {5}{6}} O b x \,y^{2}-3 \,2^{\frac {2}{3}} 3^{\frac {1}{3}} \Gamma \left (\frac {2}{3}\right ) b x \,y^{2} \Gamma \left (\frac {1}{3}, -\frac {2 a \,x^{3}}{3}\right )+9 \Gamma \left (\frac {2}{3}\right ) O \,{\mathrm e}^{\frac {2 a \,x^{3}}{3}}}{9 \Gamma \left (\frac {2}{3}\right ) O \,y^{2}}\right )\]
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x +(a x y+b) y^2 w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*x*y + b)*y^2*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ (a*x*y+b)*y^2*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {-2 \sqrt {b^{2}-4 a}\, b \arctanh \left (\frac {\sqrt {b^{2}-4 a}\, \left (2 a x y +b \right )}{-b^{2}+4 a}\right )-8 \left (-\frac {b^{2}}{4}+a \right ) \left (-\frac {\ln \left (\left (a \,x^{2} y^{2}+b x y +1\right ) x^{2}\right )}{2}+\ln \left (x y \right )\right )}{-2 b^{2}+8 a}\right )\]
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ w_x +A(a x+b y+c)^3 y^2 w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + A*(a*x + b*y + c)^3*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+ A*(a*x+b*y+c)^3*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (x -\frac {\ln \left (\frac {a x +\left (-\RootOf \left (A \,b^{4} \textit {\_Z}^{3}+3 A \,b^{3} c \,\textit {\_Z}^{2}+3 A \,b^{2} c^{2} \textit {\_Z} +A b \,c^{3}+a \right )+y \right ) b}{b}\right )}{3 A b \left (\RootOf \left (A \,b^{4} \textit {\_Z}^{3}+3 A \,b^{3} c \,\textit {\_Z}^{2}+3 A \,b^{2} c^{2} \textit {\_Z} +A b \,c^{3}+a \right ) b +c \right )^{2}}\right )\] Answer contains RootOf
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x w_x +(a x^4 y^3+(b x^2-1)y+c x) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (a*x^4*y^3 + (b*x^2 - 1)*y + c*x)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := x*diff(w(x,y),x)+ (a*x^4*y^3+(b*x^2-1)*y+c*x)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {b^{3} \ln \left (\frac {-b x y -\RootOf \left (c^{2} a \,\textit {\_Z}^{3}+b^{3} \textit {\_Z} -b^{3}\right ) c}{c}\right )}{3 \RootOf \left (c^{2} a \,\textit {\_Z}^{3}+b^{3} \textit {\_Z} -b^{3}\right )^{2} a \,c^{2}+b^{3}}-\frac {b \,x^{2}}{2}\right )\] Answer contains RootOf
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ x^2 w_x +(a x^2 y^2+b x y+c) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = x^2*D[w[x, y], x] + (a*x^2*y^2 + b*x*y + c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {x^{\sqrt {-4 a c+b^2+2 b+1}} \left (\sqrt {-4 a c+b^2+2 b+1}+2 a x y+b+1\right )}{\sqrt {-4 a c+b^2+2 b+1}-2 a x y-b-1}\right )\right \}\right \}\]
Maple ✓
restart; pde := x^2*diff(w(x,y),x)+ (a*x^2*y^2+b*x*y+c)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {-2 \arctan \left (\frac {2 a x y +b +1}{\sqrt {4 a c -b^{2}-2 b -1}}\right )+\sqrt {4 a c -b^{2}-2 b -1}\, \ln \left (x \right )}{\sqrt {4 a c -b^{2}-2 b -1}}\right )\]
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ (a x^2 y+b) w_x -(a x y^2+c) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = (a*x^2*y + b)*D[w[x, y], x] - (a*x*y^2 + c)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\frac {a x^2 y^2+2 b y+2 c x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := (a*x^2*y+b)*diff(w(x,y),x)- (a*x*y^2+c)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-\frac {1}{2} a \,x^{2} y^{2}-b y -c x \right )\]
____________________________________________________________________________________
Added January 2, 2019.
Problem 2.2.3.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\)
\[ (a x+b y^3) w_x -(c x^3+a y) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = (a*x + b*y^3)*D[w[x, y], x] - (c*x^3 + a*y)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
$Aborted
Maple ✓
restart; pde := (a*x+b*y^3)*diff(w(x,y),x)- (c*x^3+a*y)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-\frac {1}{4} b \,y^{4}-\frac {1}{4} c \,x^{4}-a x y \right )\]
____________________________________________________________________________________