Added January 29, 2019.
Problem 2.7.3.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( a \arctan ^k(\lambda x)+b\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*ArcTan[lambda*x]^k + b)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y-\int _1^x\left (a \tan ^{-1}(\lambda K[1])^k+b\right )dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( a*arctan(lambda*x)^k+b )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-b x +y -\left (\int a \arctan \left (\lambda x \right )^{k}d x \right )\right )\]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.3.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( a \arctan ^k(\lambda y)+b\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (a*ArcTan[lambda*y]^k + b)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\int _1^y\frac {1}{a \tan ^{-1}(\lambda K[1])^k+b}dK[1]-x\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+( a*arctan(lambda*y)^k+b )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (x -\left (\int \frac {1}{a \arctan \left (\lambda y \right )^{k}+b}d y \right )\right )\]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.3.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + k \arctan ^n(a x+b y+c) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + k*ArcTan[a*x + b*y + c]^n*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+k *arctan(a*x+b*y+c)^n*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-b \left (\int _{}^{\frac {a x +b y}{b}}\frac {1}{b k \arctan \left (\textit {\_a} b +c \right )^{n}+a}d \textit {\_a} \right )+x \right )\]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.3.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + a \arctan ^k(\lambda x) \arctan ^n(\mu y) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + a*ArcTan[lambda*x]^k*ArcTan[mu*y]^n*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\int _1^y\tan ^{-1}(\mu K[1])^{-n}dK[1]-\int _1^xa \tan ^{-1}(\lambda K[2])^kdK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+a*arctan(lambda*x)^k*arctan(mu*y)^n*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (-\left (\int \arctan \left (\lambda x \right )^{k}d x \right )+\int \frac {\arctan \left (\mu y \right )^{-n}}{a}d y \right )\]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.3.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left (y^2 + \lambda (\arctan x)^n y -a^2 + a \lambda (\arctan x)^n \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda*ArcTan[x]^n*y - a^2 + a*lambda*ArcTan[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)+(y^2 + lambda*arctan(x)^n*y -a^2 + a *lambda*arctan(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {\left (-a -y \right ) \left (\int {\mathrm e}^{-\left (\int \left (-\lambda \arctan \left (x \right )^{n}+2 a \right )d x \right )}d x \right )-{\mathrm e}^{-\left (\int \left (-\lambda \arctan \left (x \right )^{n}+2 a \right )d x \right )}}{a +y}\right )\]
____________________________________________________________________________________
Added January 29, 2019.
Problem 2.7.3.6 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left (y^2 + \lambda x (\arctan x)^n y + \lambda (\arctan x)^n \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (y^2 + lambda*x*ArcTan[x]^n*y + lambda*ArcTan[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (-\frac {\exp \left (-\int _1^x-\lambda \tan ^{-1}(K[5])^n K[5]dK[5]\right )}{x^2 y+x}-\int _1^x\frac {\exp \left (-\int _1^{K[6]}-\lambda \tan ^{-1}(K[5])^n K[5]dK[5]\right )}{K[6]^2}dK[6]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+(y^2 + lambda*x*arctan(x)^n*y + lambda*arctan(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {x y \left (\int {\mathrm e}^{\int \frac {\lambda \,x^{2} \arctan \left (x \right )^{n}-2}{x}d x}d x \right )+x \,{\mathrm e}^{\int \frac {\lambda \,x^{2} \arctan \left (x \right )^{n}-2}{x}d x}+\int {\mathrm e}^{\int \frac {\lambda \,x^{2} \arctan \left (x \right )^{n}-2}{x}d x}d x}{y x +1}\right )\]
____________________________________________________________________________________
Added Feb. 1, 2019.
Problem 2.7.3.7 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x - \left ( (k+1)x^k y^2 - \lambda (\arctan x)^n (x^{k+1}y-1)\right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] - ((k + 1)*x^k*y^2 - lambda*ArcTan[x]^n*(x^(k + 1)*y - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✓
restart; pde := diff(w(x,y),x)-((k+1)*x^k*y^2 - lambda*arctan(x)^n*(x^(k+1)*y-1) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {-x^{k +1} {\mathrm e}^{\int \frac {\lambda x \,x^{k +1} \arctan \left (x \right )^{n}-2 k -2}{x}d x}+\left (y \,x^{k +1}-1\right ) \left (k +1\right ) \left (\int \frac {x^{-k} {\mathrm e}^{\lambda \left (\int x^{k +1} \arctan \left (x \right )^{n}d x \right )}}{x^{2}}d x \right )}{y \,x^{k +1}-1}\right )\]
____________________________________________________________________________________
Added Feb. 1, 2019.
Problem 2.7.3.8 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (\arctan x)^n +a y+ a b - b^2 \lambda (\arctan x)^n n\right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcTan[x]^n + a*y + a*b - b^2*lambda*ArcTan[x]^n*n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (y e^{-a x}-\int _1^xe^{-a K[1]} \left (\left (\lambda -b^2 \lambda n\right ) \tan ^{-1}(K[1])^n+a b\right )dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+(lambda* arctan(x)^n +a*y+ a*b - b^2*lambda*arctan(x)^n*n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (y \,{\mathrm e}^{-a x}+\int -\left (a b +\left (-b^{2} n +1\right ) \lambda \arctan \left (x \right )^{n}\right ) {\mathrm e}^{-a x}d x \right )\]
____________________________________________________________________________________
Added Feb. 1, 2019.
Problem 2.7.3.9 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (arctan x)^n y^2 - b \lambda x^m (\arctan x)^n y+ b m x^{m-1} \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcTan[x]^n*y^2 - b*lambda*x^m*ArcTan[x]^n*y + b*m*x^(m - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+(lambda*arctan(x)^n*y^2 - b*lambda*x^m*arctan(x)^n*y+ b*m*x^(m-1))*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
sol=()
____________________________________________________________________________________
Added Feb. 1, 2019.
Problem 2.7.3.10 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (arctan x)^n y^2 +b m x^{m-1} - \lambda b^2 x^{2 m}(\arctan x)^n \right ) w_y = 0 \]
Mathematica ✗
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcTan[x]^n*y^2 + b*m*x^(m - 1) - lambda*b^2*x^(2*m)*ArcTan[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
Failed
Maple ✗
restart; pde := diff(w(x,y),x)+(lambda*arctan(x)^n*y^2 +b*m*x^(m-1) - lambda*b^2*x^(2*m)*arctan(x)^n)*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
time expired
____________________________________________________________________________________
Added Feb. 1, 2019.
Problem 2.7.3.11 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ w_x + \left ( \lambda (arctan x)^n (y-a x^m -b)^2 + a m x^{m-1} \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y], x] + (lambda*ArcTan[x]^n*(y - a*x^m - b)^2 + a*m*x^(m - 1))*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\int _1^x\lambda \tan ^{-1}(K[2])^ndK[2]-\frac {1}{a x^m+b-y}\right )\right \}\right \}\]
Maple ✓
restart; pde := diff(w(x,y),x)+(lambda*arctan(x)^n*(y-a*x^m -b)^2 + a*m*x^(m-1) )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (\frac {\left (a \,x^{m}+b -y \right ) \left (\int \lambda \arctan \left (x \right )^{n}d x \right )-1}{a \,x^{m}+b -y}\right )\]
____________________________________________________________________________________
Added Feb. 1, 2019.
Problem 2.7.3.12 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y)\) \[ x w_x + \left ( \lambda (\arctan x)^n y^2+k y+ \lambda b^2 x^{2 k} (\arctan x)^n \right ) w_y = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = x*D[w[x, y], x] + (lambda*ArcTan[x]^n*y^2 + k*y + lambda*b^2*x^(2*k)*ArcTan[x]^n)*D[w[x, y], y] == 0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
\[\left \{\left \{w(x,y)\to c_1\left (\tan ^{-1}\left (\frac {y x^{-k}}{\sqrt {b^2}}\right )-\sqrt {b^2} \int _1^x\lambda \tan ^{-1}(K[1])^n K[1]^{k-1}dK[1]\right )\right \}\right \}\]
Maple ✓
restart; pde := x*diff(w(x,y),x)+(lambda*arctan(x)^n*y^2+k*y+lambda*b^2*x^(2*k)*arctan(x)^n )*diff(w(x,y),y) = 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y))),output='realtime'));
\[w \left (x , y\right ) = \textit {\_F1} \left (b \lambda \left (\int x^{k -1} \arctan \left (x \right )^{n}d x \right )-\arctan \left (\frac {y \,x^{-k}}{b}\right )\right )\]
____________________________________________________________________________________