7.3.9 4.2

7.3.9.1 [906] Problem 1
7.3.9.2 [907] Problem 2
7.3.9.3 [908] Problem 3
7.3.9.4 [909] Problem 4
7.3.9.5 [910] Problem 5

7.3.9.1 [906] Problem 1

problem number 906

Added Feb. 9, 2019.

Problem Chapter 3.4.2.1 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \cosh (\lambda x)+k \cosh (\mu y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Cosh[lambda*x] + k*Cosh[mu*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to c_1\left (y-\frac {b x}{a}\right )+\frac {c \sinh (\lambda x)}{a \lambda }+\frac {k \sinh (\mu y)}{b \mu }\right \}\right \}\]

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) = c*cosh(lambda*x)+k*cosh(mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[w \left (x , y\right ) = \frac {a b \lambda \mu \textit {\_F1} \left (\frac {a y -b x}{a}\right )+a k \lambda \sinh \left (\mu y \right )+b c \mu \sinh \left (\lambda x \right )}{a b \lambda \mu }\]

____________________________________________________________________________________

7.3.9.2 [907] Problem 2

problem number 907

Added Feb. 9, 2019.

Problem Chapter 3.4.2.2 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = c \cosh (\lambda x+\mu y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == c*Cosh[lambda*x + mu*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to \frac {c \sinh (\lambda x+\mu y)}{a \lambda +b \mu }+c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) = c*cosh(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[w \left (x , y\right ) = \frac {c \sinh \left (\lambda x +\mu y \right )}{a \lambda +\mu b}+\textit {\_F1} \left (\frac {a y -b x}{a}\right )\]

____________________________________________________________________________________

7.3.9.3 [908] Problem 3

problem number 908

Added Feb. 9, 2019.

Problem Chapter 3.4.2.3 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b w_y = a x \cosh (\lambda x+\mu y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*D[w[x, y], y] == a*x*Cosh[lambda*x + mu*y]; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to \frac {a (x (a \lambda +b \mu ) \sinh (\lambda x+\mu y)-a \cosh (\lambda x+\mu y))}{(a \lambda +b \mu )^2}+c_1\left (y-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*diff(w(x,y),y) = a*x*cosh(lambda*x+mu*y); 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[w \left (x , y\right ) = \frac {\left (-a \cosh \left (\lambda x +\mu y \right )+\left (a \lambda +\mu b \right ) x \sinh \left (\lambda x +\mu y \right )\right ) a +\left (a \lambda +\mu b \right )^{2} \textit {\_F1} \left (\frac {a y -b x}{a}\right )}{\left (a \lambda +\mu b \right )^{2}}\]

____________________________________________________________________________________

7.3.9.4 [909] Problem 4

problem number 909

Added Feb. 9, 2019.

Problem Chapter 3.4.2.4 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \cosh ^n(\lambda x) w_y = c \cosh ^m(\mu x)+ s \cosh ^k(\beta y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Cosh[lambda*x]^n*D[w[x, y], y] == c*Cosh[mu*x]^m + s*Cosh[beta*y]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

$Aborted

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*cosh(lambda*x)^n*diff(w(x,y),y) = c*cosh(mu*x)^m+s*cosh(beta*y)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[w \left (x , y\right ) = \int _{}^{x}\frac {c \left (\cosh ^{m}\left (\textit {\_b} \mu \right )\right )+s \left (\cosh ^{k}\left (\frac {\left (b \left (\int \left (\cosh ^{n}\left (\textit {\_b} \lambda \right )\right )d \textit {\_b} \right )+\left (y -\left (\int \frac {b \left (\cosh ^{n}\left (\lambda x \right )\right )}{a}d x \right )\right ) a \right ) \beta }{a}\right )\right )}{a}d \textit {\_b} +\textit {\_F1} \left (y -\left (\int \frac {b \left (\cosh ^{n}\left (\lambda x \right )\right )}{a}d x \right )\right )\]

____________________________________________________________________________________

7.3.9.5 [910] Problem 5

problem number 910

Added Feb. 9, 2019.

Problem Chapter 3.4.2.5 from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y)\)

\[ a w_x + b \cosh ^n(\lambda y) w_y = c \cosh ^m(\mu x)+ s \cosh ^k(\beta y) \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y], x] + b*Cosh[lambda*y]^n*D[w[x, y], y] == c*Cosh[mu*x]^m + s*Cosh[beta*y]^k; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y], {x, y}], 60*10]];
 

\[\left \{\left \{w(x,y)\to \int _1^y\frac {\cosh ^{-n}(\lambda K[1]) \left (s \cosh ^k(\beta K[1])+c \cosh ^m\left (\frac {\mu \left (\frac {a \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\cosh ^2(\lambda y)\right ) \sinh (\lambda y) \cosh ^{1-n}(\lambda y)}{\sqrt {-\sinh ^2(\lambda y)}}-b \lambda (n-1) x+a \cosh ^{1-n}(\lambda K[1]) \text {csch}(\lambda K[1]) \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\cosh ^2(\lambda K[1])\right ) \sqrt {-\sinh ^2(\lambda K[1])}\right )}{b \lambda (n-1)}\right )\right )}{b}dK[1]+c_1\left (\frac {\sqrt {-\sinh ^2(\lambda y)} \text {csch}(\lambda y) \cosh ^{1-n}(\lambda y) \, _2F_1\left (\frac {1}{2},\frac {1-n}{2};\frac {3-n}{2};\cosh ^2(\lambda y)\right )}{\lambda -\lambda n}-\frac {b x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=a*diff(w(x,y),x) + b*cosh(lambda*y)^n*diff(w(x,y),y) = c*cosh(mu*x)^m+s*cosh(beta*y)^k; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y)) ),output='realtime'));
 

\[w \left (x , y\right ) = \int _{}^{y}\frac {\left (c \left (\cosh ^{m}\left (\frac {\left (a \left (\int \left (\cosh ^{-n}\left (\textit {\_b} \lambda \right )\right )d \textit {\_b} \right )-a \left (\int \left (\cosh ^{-n}\left (\lambda y \right )\right )d y \right )+b x \right ) \mu }{b}\right )\right )+s \left (\cosh ^{k}\left (\textit {\_b} \beta \right )\right )\right ) \left (\cosh ^{-n}\left (\textit {\_b} \lambda \right )\right )}{b}d \textit {\_b} +\textit {\_F1} \left (\frac {-a \left (\int \left (\cosh ^{-n}\left (\lambda y \right )\right )d y \right )+b x}{b}\right )\]

____________________________________________________________________________________