Added May 31, 2019.
Problem Chapter 6.7.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c \arccot ^n(\lambda x) \arccot ^k(\beta z) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcCot[lambda*x]^n*ArcCot[beta*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},\int _1^z\cot ^{-1}(\beta K[1])^{-k}dK[1]-\int _1^x\frac {c \cot ^{-1}(\lambda K[2])^n}{a}dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arccot(lambda*x)^n*arccot(beta*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (\frac {a y -b x}{a}, -\left (\int \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}d x \right )+\int \frac {a \left (-\arctan \left (\beta z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z \right )\]
____________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c \arccot ^n(\lambda x) \arccot ^m(\beta y) \arccot ^k(\gamma z) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcCot[lambda*x]^n*ArcCot[beta*y]^m*ArcCot[gamma*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},\int _1^z\cot ^{-1}(\gamma K[1])^{-k}dK[1]-\int _1^x\frac {c \cot ^{-1}(\lambda K[2])^n \left (\left (\frac {a \cot ^{-1}(\lambda K[2])^{-n} \text {InverseFunction}[\text {Inactive}[\text {Integrate}],1,2]\left [\int _1^x\frac {c \cot ^{-1}(\lambda K[2])^n \cot ^{-1}\left (\beta \left (y+\frac {b (K[2]-x)}{a}\right )\right )^m}{a}dK[2],\{K[2],1,x\}\right ]}{c}\right ){}^{\frac {1}{m}}\right ){}^m}{a}dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arccot(lambda*x)^n*arccot(beta*y)^m*arccot(gamma1*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (\frac {a y -b x}{a}, \int \frac {a \left (-\arctan \left (\gamma 1 z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z -\left (\int _{}^{x}\left (-\arctan \left (\textit {\_a} \lambda \right )+\frac {\pi }{2}\right )^{n} \left (-\arctan \left (\frac {\left (a y -\left (-\textit {\_a} +x \right ) b \right ) \beta }{a}\right )+\frac {\pi }{2}\right )^{m}d \textit {\_a} \right )\right )\]
____________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \arccot ^n(\lambda x) w_y + c \arccot ^k(\beta x) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*ArcCot[lambda*x]^n*D[w[x, y,z], y] +c*ArcCot[beta*x]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\int _1^x\frac {b \cot ^{-1}(\lambda K[1])^n}{a}dK[1],z-\int _1^x\frac {c \cot ^{-1}(\beta K[2])^k}{a}dK[2]\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*x)^n*diff(w(x,y,z),y)+c*arccot(beta*x)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (y -\left (\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x \right ), z -\left (\int \frac {c \left (-\arctan \left (\beta x \right )+\frac {\pi }{2}\right )^{k}}{a}d x \right )\right )\]
____________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \arccot ^n(\lambda x) w_y + c \arccot ^k(\beta z) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*ArcCot[lambda*x]^n*D[w[x, y,z], y] +c*ArcCot[beta*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\int _1^x\frac {b \cot ^{-1}(\lambda K[1])^n}{a}dK[1],\int _1^z\cot ^{-1}(\beta K[2])^{-k}dK[2]-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*x)^n*diff(w(x,y,z),y)+c*arccot(beta*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (-y +\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x , \int \frac {b \left (-\arctan \left (\beta z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z -\left (\int _{}^{y}\left (-\arctan \left (\lambda \RootOf \left (\textit {\_b} -y +\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x -\left (\int _{}^{\textit {\_Z}}\frac {b \left (-\arctan \left (\textit {\_b} \lambda \right )+\frac {\pi }{2}\right )^{n}}{a}d \textit {\_b} \right )\right )\right )+\frac {\pi }{2}\right )^{-n}d \textit {\_b} \right )\right )\]
____________________________________________________________________________________
Added May 31, 2019.
Problem Chapter 6.7.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b \arccot ^n(\lambda y) w_y + c \arccot ^k(\beta z) w_z = 0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*ArcCot[lambda*y]^n*D[w[x, y,z], y] +c*ArcCot[beta*z]^k*D[w[x,y,z],z]==0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\int _1^y\cot ^{-1}(\lambda K[1])^{-n}dK[1]-\frac {b x}{a},\int _1^z\cot ^{-1}(\beta K[2])^{-k}dK[2]-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*y)^n*diff(w(x,y,z),y)+c*arccot(beta*z)^k*diff(w(x,y,z),z)= 0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (-\frac {a \left (\int \left (-\arctan \left (\lambda y \right )+\frac {\pi }{2}\right )^{-n}d y \right )}{b}+x , -\left (\int \left (-\arctan \left (\lambda y \right )+\frac {\pi }{2}\right )^{-n}d y \right )+\int \frac {b \left (-\arctan \left (\beta z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z \right )\]
____________________________________________________________________________________