Added June 1, 2019.
Problem Chapter 7.2.2.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a w_x + b w_y + c w_z = \alpha x^2+\beta y^2+\gamma z^2 + \delta \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*D[w[x,y,z],z]==alpha*x^2+beta*y^2+gamma*z^2+delta; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {1}{3} \left (3 c_1\left (y-\frac {b x}{a},z-\frac {c x}{a}\right )+\frac {\alpha x^3+3 \delta x}{a}+\frac {\beta y^3}{b}+\frac {\gamma z^3}{c}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*diff(w(x,y,z),z)=alpha*x^2+beta*y^2+gamma*z^2+delta; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {3 a^{3} \textit {\_F1} \left (\frac {a y -b x}{a}, \frac {a z -c x}{a}\right )+3 \left (\left (\frac {\alpha \,x^{2}}{3}+\beta \,y^{2}+\gamma \,z^{2}+\delta \right ) a^{2}-\left (b \beta y +c \gamma z \right ) a x +\frac {\left (b^{2} \beta +c^{2} \gamma \right ) x^{2}}{3}\right ) x}{3 a^{3}}\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + (a_1 x^2+a_0) w_y + (b_1 x^2+b_0) w_z = \alpha x+\beta y+\gamma z + \delta \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a1*x^2+a0)*D[w[x, y,z], y] +(b1*x^2+b0)*D[w[x,y,z],z]==alpha*x+beta*y+gamma*z+delta; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to -\frac {1}{4} x \left (2 \text {a0} \beta x+\text {a1} \beta x^3-2 \alpha x+2 \text {b0} \gamma x+\text {b1} \gamma x^3-4 \beta y-4 \delta -4 \gamma z\right )+c_1\left (-\text {a0} x-\frac {\text {a1} x^3}{3}+y,-\text {b0} x-\frac {\text {b1} x^3}{3}+z\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a1*x^2+a0)*diff(w(x,y,z),y)+(b1*x^2+b0)*diff(w(x,y,z),z)=alpha*x+beta*y+gamma*z+delta; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {\left (-\mathit {a1} \beta -\gamma \mathit {b1} \right ) x^{4}}{4}+\frac {\left (-2 \beta \mathit {a0} -2 \gamma \mathit {b0} +2 \alpha \right ) x^{2}}{4}+\frac {\left (4 \beta y +4 \gamma z +4 \delta \right ) x}{4}+\textit {\_F1} \left (-\frac {1}{3} \mathit {a1} \,x^{3}-\mathit {a0} x +y , -\frac {1}{3} \mathit {b1} \,x^{3}-\mathit {b0} x +z \right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + (a y+k_1 x^2+k_0) w_y + (b z+s_1 x^2+s_0) w_z = c_1 x^2+c_0 \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a*y+k1*x^2+k0)*D[w[x, y,z], y] +(b*z+s1*x^2+s0)*D[w[x,y,z],z]==c1*x^2+c0; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (\frac {e^{-a x} \left (a^3 y+a^2 \left (\text {k0}+\text {k1} x^2\right )+2 a \text {k1} x+2 \text {k1}\right )}{a^3},\frac {e^{-b x} \left (b^3 z+b^2 \left (\text {s0}+\text {s1} x^2\right )+2 b \text {s1} x+2 \text {s1}\right )}{b^3}\right )+\text {c0} x+\frac {\text {c1} x^3}{3}\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a*y+k1*x^2+k0)*diff(w(x,y,z),y)+(b*z+s1*x^2+s0)*diff(w(x,y,z),z)=c1*x^2+c0; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {\mathit {c1} \,x^{3}}{3}+\mathit {c0} x +\textit {\_F1} \left (\frac {\left (a^{3} y +2 a \mathit {k1} x +\left (\mathit {k1} \,x^{2}+\mathit {k0} \right ) a^{2}+2 \mathit {k1} \right ) {\mathrm e}^{-a x}}{a^{3}}, \frac {\left (b^{3} z +2 b \mathit {s1} x +\left (\mathit {s1} \,x^{2}+\mathit {s0} \right ) b^{2}+2 \mathit {s1} \right ) {\mathrm e}^{-b x}}{b^{3}}\right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ w_x + (a_2 x y+a_1 x^2+a_0) w_y + (b_2 x y+b_1 x^2+b_0) w_z = c_2 y+c_1 z+c_0 x+s \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x, y,z], x] + (a2*x+a1*x^2+a0)*D[w[x, y,z], y] +(b2*x*y+b1*x^2+b0)*D[w[x,y,z],z]==c2*y+c1*z+c0*x+s; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {1}{180} x \left (15 \text {a0} \text {b2} \text {c1} x^3-90 \text {a0} \text {c2} x+10 \text {a1} \text {b2} \text {c1} x^5-45 \text {a1} \text {c2} x^3+12 \text {a2} \text {b2} \text {c1} x^4-60 \text {a2} \text {c2} x^2-90 \text {b0} \text {c1} x-45 \text {b1} \text {c1} x^3-60 \text {b2} \text {c1} x^2 y+90 \text {c0} x+180 \text {c1} z+180 \text {c2} y+180 s\right )+c_1\left (-\text {a0} x-\frac {\text {a1} x^3}{3}-\frac {\text {a2} x^2}{2}+y,\frac {1}{6} \text {a0} \text {b2} x^3+\frac {1}{10} \text {a1} \text {b2} x^5+\frac {1}{8} \text {a2} \text {b2} x^4-\text {b0} x-\frac {\text {b1} x^3}{3}-\frac {1}{2} \text {b2} x^2 y+z\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ (a2*x+a1*x^2+a0)*diff(w(x,y,z),y)+(b2*x*y+b1*x^2+b0)*diff(w(x,y,z),z)=c2*y+c1*z+c0*x+s; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {\mathit {a1} \mathit {b2} \mathit {c1} \,x^{6}}{18}+\frac {\mathit {a2} \mathit {b2} \mathit {c1} \,x^{5}}{15}+\frac {\left (-45 \mathit {a1} \mathit {c2} +\left (15 \mathit {b2} \mathit {a0} -45 \mathit {b1} \right ) \mathit {c1} \right ) x^{4}}{180}+\frac {\left (-60 \mathit {b2} \mathit {c1} y -60 \mathit {a2} \mathit {c2} \right ) x^{3}}{180}+\frac {\left (-90 \mathit {c2} \mathit {a0} -90 \mathit {b0} \mathit {c1} +90 \mathit {c0} \right ) x^{2}}{180}+\frac {\left (180 \mathit {c1} z +180 \mathit {c2} y +180 s \right ) x}{180}+\textit {\_F1} \left (-\frac {1}{3} \mathit {a1} \,x^{3}-\frac {1}{2} \mathit {a2} \,x^{2}-\mathit {a0} x +y , \frac {\mathit {a1} \mathit {b2} \,x^{5}}{10}+\frac {\mathit {a2} \mathit {b2} \,x^{4}}{8}-\frac {\mathit {b2} \,x^{2} y}{2}+\frac {\left (20 \mathit {b2} \mathit {a0} -40 \mathit {b1} \right ) x^{3}}{120}-\mathit {b0} x +z \right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a x w_x + b y w_y + c z w_z = x(\alpha x+\beta y+\gamma z) \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x*D[w[x, y,z], x] + b*y*D[w[x, y,z], y] +c*z*D[w[x,y,z],z]==x*(alpha*x+beta*y+gamma*z); sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {x \left (a^2 (\alpha x+2 \beta y+2 \gamma z)+a \alpha x (b+c)+2 a (b \gamma z+\beta c y)+\alpha b c x\right )}{2 a (a+b) (a+c)}+c_1\left (y x^{-\frac {b}{a}},z x^{-\frac {c}{a}}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*x*diff(w(x,y,z),x)+ b*y*diff(w(x,y,z),y)+c*z*diff(w(x,y,z),z)=x*(alpha*x+beta*y+gamma*z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {\alpha \,x^{2}}{2 a}+\left (\frac {\beta y}{\left (\frac {b}{a}+1\right ) a}+\frac {\gamma z}{\left (\frac {c}{a}+1\right ) a}\right ) x +\textit {\_F1} \left (y \,x^{-\frac {b}{a}}, z \,x^{-\frac {c}{a}}\right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.6, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a x^2 w_x + b x y w_y + c x z w_z = \alpha x+\beta y+\gamma z \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y,z], x] + b*x*y*D[w[x, y,z], y] +c*x*z*D[w[x,y,z],z]==alpha*x+beta*y+gamma*z; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1\left (y x^{-\frac {b}{a}},z x^{-\frac {c}{a}}\right )+\frac {\alpha \log (x)}{a}+\frac {-a (\beta y+\gamma z)+b \gamma z+\beta c y}{x (a-b) (a-c)}\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*x^2*diff(w(x,y,z),x)+ b*x*y*diff(w(x,y,z),y)+c*x*z*diff(w(x,y,z),z)=alpha*x+beta*y+gamma*z; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {\alpha \ln \left (x \right )}{a}+\textit {\_F1} \left (y \,x^{-\frac {b}{a}}, z \,x^{-\frac {c}{a}}\right )+\frac {-\frac {\beta y}{a -b}-\frac {\gamma z}{a -c}}{x}\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.7, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a x^2 w_x + b x y w_y + c z^2 w_z = k y^2 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y,z], x] + b*x*y*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]==k*y^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to -\frac {k y^2}{a x-2 b x}+c_1\left (y x^{-\frac {b}{a}},\frac {c}{a x}-\frac {1}{z}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*x^2*diff(w(x,y,z),x)+ b*x*y*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=k*y^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \frac {-\frac {k \,y^{2}}{x}+\left (a -2 b \right ) \textit {\_F1} \left (y \,x^{-\frac {b}{a}}, \frac {a x -c z}{a x z}\right )}{a -2 b}\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.8, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a x^2 w_x + b y^2 w_y + c z^2 w_z = k x y \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]==k*x*y; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {k x y \log \left (\frac {a x}{y}\right )}{a x-b y}+c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*x^2*diff(w(x,y,z),x)+ b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=k*x*y; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = -\frac {k x y \ln \left (\frac {a x}{y}\right )}{-a x +b y}+\textit {\_F1} \left (\frac {a x -b y}{a x y}, \frac {a x -c z}{a x z}\right )\]
____________________________________________________________________________________
Added June 1, 2019.
Problem Chapter 7.2.2.9, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\)
\[ a x^2 w_x + b y^2 w_y + c z^2 w_z = \alpha x^2+\beta y^2+\gamma z^2 \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*x^2*D[w[x, y,z], x] + b*y^2*D[w[x, y,z], y] +c*z^2*D[w[x,y,z],z]==alpha*x^2+beta*y^2+gamma*z^2; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \frac {a (a x-b y) (a x-c z) c_1\left (\frac {b}{a x}-\frac {1}{y},\frac {c}{a x}-\frac {1}{z}\right )+a^2 x \left (\alpha x^2-\beta y^2-\gamma z^2\right )-a \alpha x^2 (b y+c z)+a y z (b \gamma z+\beta c y)+\alpha b c x y z}{a (a x-b y) (a x-c z)}\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*x^2*diff(w(x,y,z),x)+ b*y^2*diff(w(x,y,z),y)+c*z^2*diff(w(x,y,z),z)=alpha*x^2+beta*y^2+gamma*z^2; cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = -\frac {\beta \,y^{2}}{a x -b y}-\frac {\gamma \,z^{2}}{a x -c z}+\frac {\alpha x}{a}+\textit {\_F1} \left (\frac {a x -b y}{a x y}, \frac {a x -c z}{a x z}\right )\]
____________________________________________________________________________________