Added Nov 30, 2019.
Problem Chapter 8.7.4.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\) \[ w_x + a w_y + b w_z = c \arccot ^n(\beta x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = D[w[x,y,z],x]+a*D[w[x,y,z],y]+b*D[w[x,y,z],z]==c*ArcCot[beta*x]^n * w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to c_1(y-a x,z-b x) \exp \left (\int _1^xc \cot ^{-1}(\beta K[1])^ndK[1]\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := diff(w(x,y,z),x)+ a*diff(w(x,y,z),y)+ b*diff(w(x,y,z),z)= c*arccot(beta*x)^n*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (-a x +y , -b x +z \right ) {\mathrm e}^{\int c \left (-\arctan \left (\beta x \right )+\frac {\pi }{2}\right )^{n}d x}\]
____________________________________________________________________________________
Added Nov 30, 2019.
Problem Chapter 8.7.4.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\) \[ a_1 w_x + a_2 w_y + a_3 w_z = \left ( b_1 \arccot (\lambda _1 x)+b_2 \arccot (\lambda _2 y)+b_3 \arccot (\lambda _3 z) \right ) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a1*D[w[x,y,z],x]+a2*D[w[x,y,z],y]+a3*D[w[x,y,z],z]== (b1*ArcCot[lambda1*x]+b2*ArcCot[lambda2*y]+b3*ArcCot[lambda3*z] ) * w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \left (\text {lambda1}^2 x^2+1\right )^{\frac {\text {b1}}{2 \text {a1} \text {lambda1}}} \left (\text {a1}^2 \left (\text {lambda2}^2 y^2+1\right )\right )^{\frac {\text {b2}}{2 \text {a2} \text {lambda2}}} \left (\text {a1}^2 \left (\text {lambda3}^2 z^2+1\right )\right )^{\frac {\text {b3}}{2 \text {a3} \text {lambda3}}} c_1\left (y-\frac {\text {a2} x}{\text {a1}},z-\frac {\text {a3} x}{\text {a1}}\right ) \exp \left (\frac {-\text {a1} \text {a2} \text {b3} z \tan ^{-1}(\text {lambda3} z)-\text {a1} \text {a3} \text {b2} y \tan ^{-1}(\text {lambda2} y)+\text {a2} \text {a3} \text {b1} x \cot ^{-1}(\text {lambda1} x)+\text {a2} \text {a3} \text {b2} x \tan ^{-1}(\text {lambda2} y)+\text {a2} \text {a3} \text {b2} x \cot ^{-1}(\text {lambda2} y)+\text {a2} \text {a3} \text {b3} x \tan ^{-1}(\text {lambda3} z)+\text {a2} \text {a3} \text {b3} x \cot ^{-1}(\text {lambda3} z)}{\text {a1} \text {a2} \text {a3}}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a__1*diff(w(x,y,z),x)+ a__2*diff(w(x,y,z),y)+ a__3*diff(w(x,y,z),z)= (b__1*arccot(lambda__1*x)+b__2*arccot(lambda__2*y)+b__3*arccot(lambda__3*z))*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \left (\lambda _{1}^{2} x^{2}+1\right )^{\frac {b_{1}}{2 a_{1} \lambda _{1}}} \left (y^{2} \lambda _{2}^{2}+1\right )^{\frac {b_{2}}{2 a_{2} \lambda _{2}}} \left (z^{2} \lambda _{3}^{2}+1\right )^{\frac {b_{3}}{2 a_{3} \lambda _{3}}} \textit {\_F1} \left (\frac {y a_{1} -x a_{2}}{a_{1}}, \frac {z a_{1} -a_{3} x}{a_{1}}\right ) {\mathrm e}^{\frac {-2 a_{1} a_{3} b_{2} y \arctan \left (y \lambda _{2} \right )+\left (-2 a_{1} b_{3} z \arctan \left (z \lambda _{3} \right )+\left (-2 b_{1} \arctan \left (x \lambda _{1} \right )+\pi \left (b_{1} +b_{2} +b_{3} \right )\right ) a_{3} x \right ) a_{2}}{2 a_{1} a_{2} a_{3}}}\]
____________________________________________________________________________________
Added Nov 30, 2019.
Problem Chapter 8.7.4.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\) \[ a w_x + b w_y + c \arccot ^n(\lambda x) \arccot ^k(\beta z) w_z = s \arccot ^m(\gamma x) w \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*ArcCot[lambda*x]^n*ArcCot[beta*z]^k*D[w[x,y,z],z]==s*ArcCot[gamma*x]^m * w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arccot(lambda*x)^n*arccot(beta*z)^k*diff(w(x,y,z),z)= s*arccot(gamma*x)*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \left (\gamma ^{2} x^{2}+1\right )^{\frac {s}{2 a \gamma }} \textit {\_F1} \left (\frac {a y -b x}{a}, -\left (\int \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}d x \right )+\int \frac {a \left (-\arctan \left (\beta z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z \right ) {\mathrm e}^{\frac {\left (-2 \arctan \left (\gamma x \right )+\pi \right ) s x}{2 a}}\]
____________________________________________________________________________________
Added Nov 30, 2019.
Problem Chapter 8.7.4.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\) \[ a w_x + b w_y + c \arccot ^n(\lambda x) \arccot ^m(\beta y) \arccot ^k(\gamma z) w_z = s w \]
Mathematica ✗
ClearAll["Global`*"]; pde = a*D[w[x,y,z],x]+b*D[w[x,y,z],y]+c*ArcCot[lambda*x]^n*ArcCot[beta*y]^m*ArcCot[gamma*z]^k*D[w[x,y,z],z]==s* w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
Failed
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+ c*arccot(lambda*x)^n*arccot(beta*y)^m*arccot(gamma*z)^k*diff(w(x,y,z),z)= s*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (\frac {a y -b x}{a}, \int \frac {a \left (-\arctan \left (\gamma z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z -\left (\int _{}^{x}\left (-\arctan \left (\textit {\_a} \lambda \right )+\frac {\pi }{2}\right )^{n} \left (-\arctan \left (\frac {\left (a y -\left (-\textit {\_a} +x \right ) b \right ) \beta }{a}\right )+\frac {\pi }{2}\right )^{m}d \textit {\_a} \right )\right ) {\mathrm e}^{\frac {s x}{a}}\]
____________________________________________________________________________________
Added Nov 30, 2019.
Problem Chapter 8.7.4.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.
Solve for \(w(x,y,z)\) \[ a w_x + b \arccot ^n(\lambda x) w_y + c \arccot ^k(\beta z) w_z = s \arccot ^m(\gamma x) w \]
Mathematica ✓
ClearAll["Global`*"]; pde = a*D[w[x,y,z],x]+b*ArcCot[lambda*x]^n*D[w[x,y,z],y]+c*ArcCot[beta*z]^k*D[w[x,y,z],z]==s* ArcCot[gamma*x]^m*w[x,y,z]; sol = AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x,y,z}], 60*10]];
\[\left \{\left \{w(x,y,z)\to \exp \left (\int _1^z\frac {s \cot ^{-1}(\beta K[3])^{-k} \cot ^{-1}\left (\frac {\gamma \left (c x-a \int _1^z\cot ^{-1}(\beta K[2])^{-k}dK[2]+a \int _1^{K[3]}\cot ^{-1}(\beta K[2])^{-k}dK[2]\right )}{c}\right ){}^m}{c}dK[3]\right ) c_1\left (y-\int _1^x\frac {b \cot ^{-1}(\lambda K[1])^n}{a}dK[1],\int _1^z\cot ^{-1}(\beta K[2])^{-k}dK[2]-\frac {c x}{a}\right )\right \}\right \}\]
Maple ✓
restart; local gamma; pde := a*diff(w(x,y,z),x)+ b*arccot(lambda*x)^n*diff(w(x,y,z),y)+ c*arccot(beta*z)^k*diff(w(x,y,z),z)= s*arccot(gamma*x)^m*w(x,y,z); cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
\[w \left (x , y , z\right ) = \textit {\_F1} \left (-y +\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x , \int \frac {b \left (-\arctan \left (\beta z \right )+\frac {\pi }{2}\right )^{-k}}{c}d z -\left (\int _{}^{y}\left (-\arctan \left (\lambda \RootOf \left (\textit {\_b} -y +\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x -\left (\int _{}^{\textit {\_Z}}\frac {b \left (-\arctan \left (\textit {\_b} \lambda \right )+\frac {\pi }{2}\right )^{n}}{a}d \textit {\_b} \right )\right )\right )+\frac {\pi }{2}\right )^{-n}d \textit {\_b} \right )\right ) {\mathrm e}^{\int _{}^{y}\frac {s \left (-\arctan \left (\gamma \RootOf \left (\textit {\_b} -y +\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x -\left (\int _{}^{\textit {\_Z}}\frac {b \left (-\arctan \left (\textit {\_a} \lambda \right )+\frac {\pi }{2}\right )^{n}}{a}d \textit {\_a} \right )\right )\right )+\frac {\pi }{2}\right )^{m} \mathrm {arccot}\left (\lambda \RootOf \left (\textit {\_b} -y +\int \frac {b \left (-\arctan \left (\lambda x \right )+\frac {\pi }{2}\right )^{n}}{a}d x -\left (\int _{}^{\textit {\_Z}}\frac {b \left (-\arctan \left (\textit {\_a} \lambda \right )+\frac {\pi }{2}\right )^{n}}{a}d \textit {\_a} \right )\right )\right )^{-n}}{b}d \textit {\_b}}\]
____________________________________________________________________________________