6.6.21 7.3

6.6.21.1 [1540] Problem 1
6.6.21.2 [1541] Problem 2
6.6.21.3 [1542] Problem 3
6.6.21.4 [1543] Problem 4
6.6.21.5 [1544] Problem 5

6.6.21.1 [1540] Problem 1

problem number 1540

Added May 31, 2019.

Problem Chapter 6.7.3.1, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \arctan ^n(\lambda x) \arctan ^k(\beta z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcTan[lambda*x]^n*ArcTan[beta*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},\int _1^z\arctan (\beta K[1])^{-k}dK[1]-\int _1^x\frac {c \arctan (\lambda K[2])^n}{a}dK[2]\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arctan(lambda*x)^n*arctan(beta*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {a y -x b}{a}, -\int \arctan \left (\lambda x \right )^{n}d x +\frac {a \int \arctan \left (\beta z \right )^{-k}d z}{c}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.6.21.2 [1541] Problem 2

problem number 1541

Added May 31, 2019.

Problem Chapter 6.7.3.2, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b w_y + c \arctan ^n(\lambda x) \arctan ^m(\beta y) \arctan ^k(\gamma z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*D[w[x, y,z], y] +c*ArcTan[lambda*x]^n*ArcTan[beta*y]^m*ArcTan[gamma*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\frac {b x}{a},\int _1^z\arctan (\gamma K[1])^{-k}dK[1]-\int _1^x\frac {c \arctan (\lambda K[2])^n \left (\left (\frac {a \arctan (\lambda K[2])^{-n} \text {InverseFunction}[\text {Inactive}[\text {Integrate}],1,2]\left [\int _1^x\frac {c \arctan (\lambda K[2])^n \arctan \left (\beta \left (y+\frac {b (K[2]-x)}{a}\right )\right )^m}{a}dK[2],\{K[2],1,x\}\right ]}{c}\right ){}^{\frac {1}{m}}\right ){}^m}{a}dK[2]\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*diff(w(x,y,z),y)+c*arctan(lambda*x)^n*arctan(beta*y)^m*arctan(gamma1*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (\frac {a y -b x}{a}, -\int _{}^{x}\arctan \left (\lambda \textit {\_a} \right )^{n} \arctan \left (\frac {\left (a y -b \left (-\textit {\_a} +x \right )\right ) \beta }{a}\right )^{m}d \textit {\_a} +\frac {a \int \arctan \left (\gamma \operatorname {1} z \right )^{-k}d z}{c}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.6.21.3 [1542] Problem 3

problem number 1542

Added May 31, 2019.

Problem Chapter 6.7.3.3, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \arctan ^n(\lambda x) w_y + c \arctan ^k(\beta x) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcTan[lambda*x]^n*D[w[x, y,z], y] +c*ArcTan[beta*x]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\int _1^x\frac {b \arctan (\lambda K[1])^n}{a}dK[1],z-\int _1^x\frac {c \arctan (\beta K[2])^k}{a}dK[2]\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*arctan(lambda*x)^n*diff(w(x,y,z),y)+c*arctan(beta*x)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (-\frac {b \int \arctan \left (\lambda x \right )^{n}d x}{a}+y , -\frac {c \int \arctan \left (\beta x \right )^{k}d x}{a}+z \right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.6.21.4 [1543] Problem 4

problem number 1543

Added May 31, 2019.

Problem Chapter 6.7.3.4, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \arctan ^n(\lambda x) w_y + c \arctan ^k(\beta z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcTan[lambda*x]^n*D[w[x, y,z], y] +c*ArcTan[beta*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (y-\int _1^x\frac {b \arctan (\lambda K[1])^n}{a}dK[1],\int _1^z\arctan (\beta K[2])^{-k}dK[2]-\frac {c x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*arctan(lambda*x)^n*diff(w(x,y,z),y)+c*arctan(beta*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (-y +\frac {b \int \arctan \left (\lambda x \right )^{n}d x}{a}, -\int _{}^{y}{\arctan \left (\lambda \operatorname {RootOf}\left (b \int \arctan \left (\lambda x \right )^{n}d x -b \int _{}^{\textit {\_Z}}\arctan \left (\lambda \textit {\_b} \right )^{n}d \textit {\_b} +\textit {\_b} a -y a \right )\right )}^{-n}d \textit {\_b} +\frac {b \int \arctan \left (\beta z \right )^{-k}d z}{c}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

6.6.21.5 [1544] Problem 5

problem number 1544

Added May 31, 2019.

Problem Chapter 6.7.3.5, from Handbook of first order partial differential equations by Polyanin, Zaitsev, Moussiaux.

Solve for \(w(x,y,z)\)

\[ a w_x + b \arctan ^n(\lambda y) w_y + c \arctan ^k(\beta z) w_z = 0 \]

Mathematica

ClearAll["Global`*"]; 
pde =  a*D[w[x, y,z], x] + b*ArcTan[lambda*y]^n*D[w[x, y,z], y] +c*ArcTan[beta*z]^k*D[w[x,y,z],z]==0; 
sol =  AbsoluteTiming[TimeConstrained[DSolve[pde, w[x, y,z], {x, y,z}], 60*10]];
 
\[\left \{\left \{w(x,y,z)\to c_1\left (\int _1^y\arctan (\lambda K[1])^{-n}dK[1]-\frac {b x}{a},\int _1^z\arctan (\beta K[2])^{-k}dK[2]-\frac {c x}{a}\right )\right \}\right \}\]

Maple

restart; 
pde :=  a*diff(w(x,y,z),x)+ b*arctan(lambda*y)^n*diff(w(x,y,z),y)+c*arctan(beta*z)^k*diff(w(x,y,z),z)= 0; 
cpu_time := timelimit(60*10,CodeTools[Usage](assign('sol',pdsolve(pde,w(x,y,z))),output='realtime'));
 
\[w \left (x , y , z\right ) = f_{1} \left (-\frac {a \int \arctan \left (\lambda y \right )^{-n}d y}{b}+x , -\int \arctan \left (\lambda y \right )^{-n}d y +\frac {b \int \arctan \left (\beta z \right )^{-k}d z}{c}\right )\]

___________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________