2.13 problem 15

2.13.1 Maple step by step solution

Internal problem ID [5648]
Internal file name [OUTPUT/4896_Sunday_June_05_2022_03_09_38_PM_76748019/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended Power Series Method: Frobenius Method page 186
Problem number: 15.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

\[ \boxed {2 x \left (1-x \right ) y^{\prime \prime }-\left (1+6 x \right ) y^{\prime }-2 y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (-2 x^{2}+2 x \right ) y^{\prime \prime }+\left (-6 x -1\right ) y^{\prime }-2 y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {1+6 x}{2 \left (x -1\right ) x}\\ q(x) &= \frac {1}{\left (x -1\right ) x}\\ \end {align*}

Table 11: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {1+6 x}{2 \left (x -1\right ) x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = 1\) \(\text {``regular''}\)
\(q(x)=\frac {1}{\left (x -1\right ) x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = 1\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, 1, \infty ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ -2 y^{\prime \prime } \left (x -1\right ) x +\left (-6 x -1\right ) y^{\prime }-2 y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} -2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right ) \left (x -1\right ) x +\left (-6 x -1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )-2 \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-6 x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-\left (n +r \right ) a_{n} x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r -1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r -1}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r -1}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-6 x^{n +r} a_{n} \left (n +r \right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-6 a_{n -1} \left (n +r -1\right ) x^{n +r -1}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 a_{n} x^{n +r}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} x^{n +r -1}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r -1\). \begin{equation} \tag{2B} \moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-6 a_{n -1} \left (n +r -1\right ) x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-\left (n +r \right ) a_{n} x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-2 a_{n -1} x^{n +r -1}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 2 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )-\left (n +r \right ) a_{n} x^{n +r -1} = 0 \] When \(n = 0\) the above becomes \[ 2 x^{-1+r} a_{0} r \left (-1+r \right )-r a_{0} x^{-1+r} = 0 \] Or \[ \left (2 x^{-1+r} r \left (-1+r \right )-r \,x^{-1+r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ r \,x^{-1+r} \left (-3+2 r \right ) = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 2 r^{2}-3 r = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {3}{2}}\\ r_2 &= 0 \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ r \,x^{-1+r} \left (-3+2 r \right ) = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {3}{2}}, 0\right ]\).

Since \(r_1 - r_2 = {\frac {3}{2}}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {3}{2}}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n} \end {align*}

We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} -2 a_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+2 a_{n} \left (n +r \right ) \left (n +r -1\right )-6 a_{n -1} \left (n +r -1\right )-a_{n} \left (n +r \right )-2 a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = \frac {2 \left (n +r \right ) a_{n -1}}{2 n -3+2 r}\tag {4} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{n} = \frac {\left (n +\frac {3}{2}\right ) a_{n -1}}{n}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {3}{2}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=\frac {2+2 r}{2 r -1} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{1}={\frac {5}{2}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+2 r}{2 r -1}\) \(\frac {5}{2}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {4 r^{2}+12 r +8}{4 r^{2}-1} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{2}={\frac {35}{8}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+2 r}{2 r -1}\) \(\frac {5}{2}\)
\(a_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(\frac {35}{8}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{3}={\frac {105}{16}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+2 r}{2 r -1}\) \(\frac {5}{2}\)
\(a_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(\frac {35}{8}\)
\(a_{3}\) \(\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3}\) \(\frac {105}{16}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {16 r^{4}+160 r^{3}+560 r^{2}+800 r +384}{16 r^{4}+64 r^{3}+56 r^{2}-16 r -15} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{4}={\frac {1155}{128}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+2 r}{2 r -1}\) \(\frac {5}{2}\)
\(a_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(\frac {35}{8}\)
\(a_{3}\) \(\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3}\) \(\frac {105}{16}\)
\(a_{4}\) \(\frac {16 r^{4}+160 r^{3}+560 r^{2}+800 r +384}{16 r^{4}+64 r^{3}+56 r^{2}-16 r -15}\) \(\frac {1155}{128}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=\frac {32 r^{5}+480 r^{4}+2720 r^{3}+7200 r^{2}+8768 r +3840}{32 r^{5}+240 r^{4}+560 r^{3}+360 r^{2}-142 r -105} \] Which for the root \(r = {\frac {3}{2}}\) becomes \[ a_{5}={\frac {3003}{256}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {2+2 r}{2 r -1}\) \(\frac {5}{2}\)
\(a_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(\frac {35}{8}\)
\(a_{3}\) \(\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3}\) \(\frac {105}{16}\)
\(a_{4}\) \(\frac {16 r^{4}+160 r^{3}+560 r^{2}+800 r +384}{16 r^{4}+64 r^{3}+56 r^{2}-16 r -15}\) \(\frac {1155}{128}\)
\(a_{5}\) \(\frac {32 r^{5}+480 r^{4}+2720 r^{3}+7200 r^{2}+8768 r +3840}{32 r^{5}+240 r^{4}+560 r^{3}+360 r^{2}-142 r -105}\) \(\frac {3003}{256}\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{\frac {3}{2}} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{\frac {3}{2}} \left (1+\frac {5 x}{2}+\frac {35 x^{2}}{8}+\frac {105 x^{3}}{16}+\frac {1155 x^{4}}{128}+\frac {3003 x^{5}}{256}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} -2 b_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+2 b_{n} \left (n +r \right ) \left (n +r -1\right )-6 b_{n -1} \left (n +r -1\right )-\left (n +r \right ) b_{n}-2 b_{n -1} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = \frac {2 \left (n +r \right ) b_{n -1}}{2 n -3+2 r}\tag {4} \] Which for the root \(r = 0\) becomes \[ b_{n} = \frac {2 n b_{n -1}}{2 n -3}\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = 0\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=\frac {2+2 r}{2 r -1} \] Which for the root \(r = 0\) becomes \[ b_{1}=-2 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {2+2 r}{2 r -1}\) \(-2\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=\frac {4 r^{2}+12 r +8}{4 r^{2}-1} \] Which for the root \(r = 0\) becomes \[ b_{2}=-8 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {2+2 r}{2 r -1}\) \(-2\)
\(b_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(-8\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3} \] Which for the root \(r = 0\) becomes \[ b_{3}=-16 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {2+2 r}{2 r -1}\) \(-2\)
\(b_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(-8\)
\(b_{3}\) \(\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3}\) \(-16\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {16 r^{4}+160 r^{3}+560 r^{2}+800 r +384}{16 r^{4}+64 r^{3}+56 r^{2}-16 r -15} \] Which for the root \(r = 0\) becomes \[ b_{4}=-{\frac {128}{5}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {2+2 r}{2 r -1}\) \(-2\)
\(b_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(-8\)
\(b_{3}\) \(\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3}\) \(-16\)
\(b_{4}\) \(\frac {16 r^{4}+160 r^{3}+560 r^{2}+800 r +384}{16 r^{4}+64 r^{3}+56 r^{2}-16 r -15}\) \(-{\frac {128}{5}}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=\frac {32 r^{5}+480 r^{4}+2720 r^{3}+7200 r^{2}+8768 r +3840}{32 r^{5}+240 r^{4}+560 r^{3}+360 r^{2}-142 r -105} \] Which for the root \(r = 0\) becomes \[ b_{5}=-{\frac {256}{7}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {2+2 r}{2 r -1}\) \(-2\)
\(b_{2}\) \(\frac {4 r^{2}+12 r +8}{4 r^{2}-1}\) \(-8\)
\(b_{3}\) \(\frac {8 r^{3}+48 r^{2}+88 r +48}{8 r^{3}+12 r^{2}-2 r -3}\) \(-16\)
\(b_{4}\) \(\frac {16 r^{4}+160 r^{3}+560 r^{2}+800 r +384}{16 r^{4}+64 r^{3}+56 r^{2}-16 r -15}\) \(-{\frac {128}{5}}\)
\(b_{5}\) \(\frac {32 r^{5}+480 r^{4}+2720 r^{3}+7200 r^{2}+8768 r +3840}{32 r^{5}+240 r^{4}+560 r^{3}+360 r^{2}-142 r -105}\) \(-{\frac {256}{7}}\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \\ &= 1-2 x -8 x^{2}-16 x^{3}-\frac {128 x^{4}}{5}-\frac {256 x^{5}}{7}+O\left (x^{6}\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{\frac {3}{2}} \left (1+\frac {5 x}{2}+\frac {35 x^{2}}{8}+\frac {105 x^{3}}{16}+\frac {1155 x^{4}}{128}+\frac {3003 x^{5}}{256}+O\left (x^{6}\right )\right ) + c_{2} \left (1-2 x -8 x^{2}-16 x^{3}-\frac {128 x^{4}}{5}-\frac {256 x^{5}}{7}+O\left (x^{6}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{\frac {3}{2}} \left (1+\frac {5 x}{2}+\frac {35 x^{2}}{8}+\frac {105 x^{3}}{16}+\frac {1155 x^{4}}{128}+\frac {3003 x^{5}}{256}+O\left (x^{6}\right )\right )+c_{2} \left (1-2 x -8 x^{2}-16 x^{3}-\frac {128 x^{4}}{5}-\frac {256 x^{5}}{7}+O\left (x^{6}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{\frac {3}{2}} \left (1+\frac {5 x}{2}+\frac {35 x^{2}}{8}+\frac {105 x^{3}}{16}+\frac {1155 x^{4}}{128}+\frac {3003 x^{5}}{256}+O\left (x^{6}\right )\right )+c_{2} \left (1-2 x -8 x^{2}-16 x^{3}-\frac {128 x^{4}}{5}-\frac {256 x^{5}}{7}+O\left (x^{6}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{\frac {3}{2}} \left (1+\frac {5 x}{2}+\frac {35 x^{2}}{8}+\frac {105 x^{3}}{16}+\frac {1155 x^{4}}{128}+\frac {3003 x^{5}}{256}+O\left (x^{6}\right )\right )+c_{2} \left (1-2 x -8 x^{2}-16 x^{3}-\frac {128 x^{4}}{5}-\frac {256 x^{5}}{7}+O\left (x^{6}\right )\right ) \] Verified OK.

2.13.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & -2 y^{\prime \prime } \left (x -1\right ) x +\left (-6 x -1\right ) y^{\prime }-2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {\left (1+6 x \right ) y^{\prime }}{2 x \left (x -1\right )}-\frac {y}{\left (x -1\right ) x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {\left (1+6 x \right ) y^{\prime }}{2 x \left (x -1\right )}+\frac {y}{\left (x -1\right ) x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {1+6 x}{2 \left (x -1\right ) x}, P_{3}\left (x \right )=\frac {1}{\left (x -1\right ) x}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-\frac {1}{2} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 2 y^{\prime \prime } \left (x -1\right ) x +\left (1+6 x \right ) y^{\prime }+2 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =1..2 \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -2+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2-m \\ {} & {} & x^{m}\cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =-2+m}{\sum }}a_{k +2-m} \left (k +2-m +r \right ) \left (k +1-m +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & -a_{0} r \left (-3+2 r \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (-a_{k +1} \left (k +r +1\right ) \left (2 k -1+2 r \right )+2 a_{k} \left (k +r +1\right )^{2}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & -r \left (-3+2 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {3}{2}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & -2 a_{k +1} \left (k +r -\frac {1}{2}\right ) \left (k +r +1\right )+2 a_{k} \left (k +r +1\right )^{2}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=\frac {2 a_{k} \left (k +r +1\right )}{2 k -1+2 r} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=\frac {2 a_{k} \left (k +1\right )}{2 k -1} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=\frac {2 a_{k} \left (k +1\right )}{2 k -1}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {3}{2} \\ {} & {} & a_{k +1}=\frac {2 a_{k} \left (k +\frac {5}{2}\right )}{2 k +2} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {3}{2} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {3}{2}}, a_{k +1}=\frac {2 a_{k} \left (k +\frac {5}{2}\right )}{2 k +2}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {3}{2}}\right ), a_{k +1}=\frac {2 a_{k} \left (k +1\right )}{2 k -1}, b_{k +1}=\frac {2 b_{k} \left (k +\frac {5}{2}\right )}{2 k +2}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
<- linear_1 successful`
 

Solution by Maple

Time used: 0.032 (sec). Leaf size: 44

Order:=6; 
dsolve(2*x*(1-x)*diff(y(x),x$2)-(1+6*x)*diff(y(x),x)-2*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = c_{1} x^{\frac {3}{2}} \left (1+\frac {5}{2} x +\frac {35}{8} x^{2}+\frac {105}{16} x^{3}+\frac {1155}{128} x^{4}+\frac {3003}{256} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-2 x -8 x^{2}-16 x^{3}-\frac {128}{5} x^{4}-\frac {256}{7} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 79

AsymptoticDSolveValue[2*x*(1-x)*y''[x]-(1+6*x)*y'[x]-2*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_2 \left (-\frac {256 x^5}{7}-\frac {128 x^4}{5}-16 x^3-8 x^2-2 x+1\right )+c_1 \left (\frac {3003 x^5}{256}+\frac {1155 x^4}{128}+\frac {105 x^3}{16}+\frac {35 x^2}{8}+\frac {5 x}{2}+1\right ) x^{3/2} \]