2.15 problem 17

2.15.1 Maple step by step solution

Internal problem ID [5650]
Internal file name [OUTPUT/4898_Sunday_June_05_2022_03_09_45_PM_71058820/index.tex]

Book: ADVANCED ENGINEERING MATHEMATICS. ERWIN KREYSZIG, HERBERT KREYSZIG, EDWARD J. NORMINTON. 10th edition. John Wiley USA. 2011
Section: Chapter 5. Series Solutions of ODEs. Special Functions. Problem set 5.3. Extended Power Series Method: Frobenius Method page 186
Problem number: 17.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference not integer"

Maple gives the following as the ode type

[[_Emden, _Fowler]]

\[ \boxed {4 x y^{\prime \prime }+y^{\prime }+8 y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ 4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {1}{4 x}\\ q(x) &= \frac {2}{x}\\ \end {align*}

Table 13: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {1}{4 x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=\frac {2}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ 4 x y^{\prime \prime }+y^{\prime }+8 y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} 4 x \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+8 \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}8 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r -1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r -1}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}8 a_{n} x^{n +r} &= \moverset {\infty }{\munderset {n =1}{\sum }}8 a_{n -1} x^{n +r -1} \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r -1\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}4 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}8 a_{n -1} x^{n +r -1}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ 4 x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )+\left (n +r \right ) a_{n} x^{n +r -1} = 0 \] When \(n = 0\) the above becomes \[ 4 x^{-1+r} a_{0} r \left (-1+r \right )+r a_{0} x^{-1+r} = 0 \] Or \[ \left (4 x^{-1+r} r \left (-1+r \right )+r \,x^{-1+r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ r \,x^{-1+r} \left (-3+4 r \right ) = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ 4 r^{2}-3 r = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= {\frac {3}{4}}\\ r_2 &= 0 \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ r \,x^{-1+r} \left (-3+4 r \right ) = 0 \] Solving for \(r\) gives the roots of the indicial equation as \(\left [{\frac {3}{4}}, 0\right ]\).

Since \(r_1 - r_2 = {\frac {3}{4}}\) is not an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +\frac {3}{4}}\\ y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n} \end {align*}

We start by finding \(y_{1}\left (x \right )\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 4 a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n} \left (n +r \right )+8 a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {8 a_{n -1}}{4 n^{2}+8 n r +4 r^{2}-3 n -3 r}\tag {4} \] Which for the root \(r = {\frac {3}{4}}\) becomes \[ a_{n} = -\frac {8 a_{n -1}}{n \left (4 n +3\right )}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = {\frac {3}{4}}\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=-\frac {8}{4 r^{2}+5 r +1} \] Which for the root \(r = {\frac {3}{4}}\) becomes \[ a_{1}=-{\frac {8}{7}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-{\frac {8}{7}}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )} \] Which for the root \(r = {\frac {3}{4}}\) becomes \[ a_{2}={\frac {32}{77}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-{\frac {8}{7}}\)
\(a_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{77}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )} \] Which for the root \(r = {\frac {3}{4}}\) becomes \[ a_{3}=-{\frac {256}{3465}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-{\frac {8}{7}}\)
\(a_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{77}\)
\(a_{3}\) \(-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )}\) \(-{\frac {256}{3465}}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {4096}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right )} \] Which for the root \(r = {\frac {3}{4}}\) becomes \[ a_{4}={\frac {512}{65835}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-{\frac {8}{7}}\)
\(a_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{77}\)
\(a_{3}\) \(-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )}\) \(-{\frac {256}{3465}}\)
\(a_{4}\) \(\frac {4096}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right )}\) \(\frac {512}{65835}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=-\frac {32768}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right ) \left (4 r^{2}+37 r +85\right )} \] Which for the root \(r = {\frac {3}{4}}\) becomes \[ a_{5}=-{\frac {4096}{7571025}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-{\frac {8}{7}}\)
\(a_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{77}\)
\(a_{3}\) \(-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )}\) \(-{\frac {256}{3465}}\)
\(a_{4}\) \(\frac {4096}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right )}\) \(\frac {512}{65835}\)
\(a_{5}\) \(-\frac {32768}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right ) \left (4 r^{2}+37 r +85\right )}\) \(-{\frac {4096}{7571025}}\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{\frac {3}{4}} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{\frac {3}{4}} \left (1-\frac {8 x}{7}+\frac {32 x^{2}}{77}-\frac {256 x^{3}}{3465}+\frac {512 x^{4}}{65835}-\frac {4096 x^{5}}{7571025}+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Eq (2B) derived above is now used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} 4 b_{n} \left (n +r \right ) \left (n +r -1\right )+\left (n +r \right ) b_{n}+8 b_{n -1} = 0 \end{equation} Solving for \(b_{n}\) from recursive equation (4) gives \[ b_{n} = -\frac {8 b_{n -1}}{4 n^{2}+8 n r +4 r^{2}-3 n -3 r}\tag {4} \] Which for the root \(r = 0\) becomes \[ b_{n} = -\frac {8 b_{n -1}}{n \left (4 n -3\right )}\tag {5} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = 0\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=-\frac {8}{4 r^{2}+5 r +1} \] Which for the root \(r = 0\) becomes \[ b_{1}=-8 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-8\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )} \] Which for the root \(r = 0\) becomes \[ b_{2}={\frac {32}{5}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-8\)
\(b_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{5}\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )} \] Which for the root \(r = 0\) becomes \[ b_{3}=-{\frac {256}{135}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-8\)
\(b_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{5}\)
\(b_{3}\) \(-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )}\) \(-{\frac {256}{135}}\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {4096}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right )} \] Which for the root \(r = 0\) becomes \[ b_{4}={\frac {512}{1755}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-8\)
\(b_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{5}\)
\(b_{3}\) \(-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )}\) \(-{\frac {256}{135}}\)
\(b_{4}\) \(\frac {4096}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right )}\) \(\frac {512}{1755}\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=-\frac {32768}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right ) \left (4 r^{2}+37 r +85\right )} \] Which for the root \(r = 0\) becomes \[ b_{5}=-{\frac {4096}{149175}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(-\frac {8}{4 r^{2}+5 r +1}\) \(-8\)
\(b_{2}\) \(\frac {64}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right )}\) \(\frac {32}{5}\)
\(b_{3}\) \(-\frac {512}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right )}\) \(-{\frac {256}{135}}\)
\(b_{4}\) \(\frac {4096}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right )}\) \(\frac {512}{1755}\)
\(b_{5}\) \(-\frac {32768}{\left (4 r^{2}+5 r +1\right ) \left (4 r^{2}+13 r +10\right ) \left (4 r^{2}+21 r +27\right ) \left (4 r^{2}+29 r +52\right ) \left (4 r^{2}+37 r +85\right )}\) \(-{\frac {4096}{149175}}\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}\dots \\ &= 1-8 x +\frac {32 x^{2}}{5}-\frac {256 x^{3}}{135}+\frac {512 x^{4}}{1755}-\frac {4096 x^{5}}{149175}+O\left (x^{6}\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{\frac {3}{4}} \left (1-\frac {8 x}{7}+\frac {32 x^{2}}{77}-\frac {256 x^{3}}{3465}+\frac {512 x^{4}}{65835}-\frac {4096 x^{5}}{7571025}+O\left (x^{6}\right )\right ) + c_{2} \left (1-8 x +\frac {32 x^{2}}{5}-\frac {256 x^{3}}{135}+\frac {512 x^{4}}{1755}-\frac {4096 x^{5}}{149175}+O\left (x^{6}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{\frac {3}{4}} \left (1-\frac {8 x}{7}+\frac {32 x^{2}}{77}-\frac {256 x^{3}}{3465}+\frac {512 x^{4}}{65835}-\frac {4096 x^{5}}{7571025}+O\left (x^{6}\right )\right )+c_{2} \left (1-8 x +\frac {32 x^{2}}{5}-\frac {256 x^{3}}{135}+\frac {512 x^{4}}{1755}-\frac {4096 x^{5}}{149175}+O\left (x^{6}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{\frac {3}{4}} \left (1-\frac {8 x}{7}+\frac {32 x^{2}}{77}-\frac {256 x^{3}}{3465}+\frac {512 x^{4}}{65835}-\frac {4096 x^{5}}{7571025}+O\left (x^{6}\right )\right )+c_{2} \left (1-8 x +\frac {32 x^{2}}{5}-\frac {256 x^{3}}{135}+\frac {512 x^{4}}{1755}-\frac {4096 x^{5}}{149175}+O\left (x^{6}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{\frac {3}{4}} \left (1-\frac {8 x}{7}+\frac {32 x^{2}}{77}-\frac {256 x^{3}}{3465}+\frac {512 x^{4}}{65835}-\frac {4096 x^{5}}{7571025}+O\left (x^{6}\right )\right )+c_{2} \left (1-8 x +\frac {32 x^{2}}{5}-\frac {256 x^{3}}{135}+\frac {512 x^{4}}{1755}-\frac {4096 x^{5}}{149175}+O\left (x^{6}\right )\right ) \] Verified OK.

2.15.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & 4 x \left (\frac {d}{d x}y^{\prime }\right )+y^{\prime }+8 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=-\frac {y^{\prime }}{4 x}-\frac {2 y}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+\frac {y^{\prime }}{4 x}+\frac {2 y}{x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {1}{4 x}, P_{3}\left (x \right )=\frac {2}{x}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=\frac {1}{4} \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & 4 x \left (\frac {d}{d x}y^{\prime }\right )+y^{\prime }+8 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & y^{\prime }=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot \left (\frac {d}{d x}y^{\prime }\right )\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot \left (\frac {d}{d x}y^{\prime }\right )=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (-3+4 r \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +1} \left (k +1+r \right ) \left (4 k +1+4 r \right )+8 a_{k}\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (-3+4 r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, \frac {3}{4}\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & 4 \left (k +\frac {1}{4}+r \right ) \left (k +1+r \right ) a_{k +1}+8 a_{k}=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {8 a_{k}}{\left (4 k +1+4 r \right ) \left (k +1+r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0 \\ {} & {} & a_{k +1}=-\frac {8 a_{k}}{\left (4 k +1\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =0 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +1}=-\frac {8 a_{k}}{\left (4 k +1\right ) \left (k +1\right )}\right ] \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =\frac {3}{4} \\ {} & {} & a_{k +1}=-\frac {8 a_{k}}{\left (4 k +4\right ) \left (k +\frac {7}{4}\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =\frac {3}{4} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +\frac {3}{4}}, a_{k +1}=-\frac {8 a_{k}}{\left (4 k +4\right ) \left (k +\frac {7}{4}\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=\left (\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +\frac {3}{4}}\right ), a_{k +1}=-\frac {8 a_{k}}{\left (4 k +1\right ) \left (k +1\right )}, b_{k +1}=-\frac {8 b_{k}}{\left (4 k +4\right ) \left (k +\frac {7}{4}\right )}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
<- No Liouvillian solutions exists 
-> Trying a solution in terms of special functions: 
   -> Bessel 
   <- Bessel successful 
<- special function solution successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 44

Order:=6; 
dsolve(4*x*diff(y(x),x$2)+diff(y(x),x)+8*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = c_{1} x^{\frac {3}{4}} \left (1-\frac {8}{7} x +\frac {32}{77} x^{2}-\frac {256}{3465} x^{3}+\frac {512}{65835} x^{4}-\frac {4096}{7571025} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (1-8 x +\frac {32}{5} x^{2}-\frac {256}{135} x^{3}+\frac {512}{1755} x^{4}-\frac {4096}{149175} x^{5}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 83

AsymptoticDSolveValue[4*x*y''[x]+y'[x]+8*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_2 \left (-\frac {4096 x^5}{149175}+\frac {512 x^4}{1755}-\frac {256 x^3}{135}+\frac {32 x^2}{5}-8 x+1\right )+c_1 x^{3/4} \left (-\frac {4096 x^5}{7571025}+\frac {512 x^4}{65835}-\frac {256 x^3}{3465}+\frac {32 x^2}{77}-\frac {8 x}{7}+1\right ) \]