2.2 problem 7.1 (ii)

2.2.1 Solving as quadrature ode
2.2.2 Maple step by step solution

Internal problem ID [11978]
Internal file name [OUTPUT/10631_Saturday_September_02_2023_02_48_42_PM_70744530/index.tex]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section: Chapter 7, Scalar autonomous ODEs. Exercises page 56
Problem number: 7.1 (ii).
ODE order: 1.
ODE degree: 1.

The type(s) of ODE detected by this program : "quadrature"

Maple gives the following as the ode type

[_quadrature]

\[ \boxed {x^{\prime }-x \left (2-x\right )=0} \]

2.2.1 Solving as quadrature ode

Integrating both sides gives \begin {align*} \int -\frac {1}{x \left (x -2\right )}d x &= t +c_{1}\\ \frac {\ln \left (x \right )}{2}-\frac {\ln \left (x -2\right )}{2}&=t +c_{1} \end {align*}

Solving for \(x\) gives these solutions \begin {align*} x_1&=\frac {2 \,{\mathrm e}^{2 t +2 c_{1}}}{-1+{\mathrm e}^{2 t +2 c_{1}}}\\ &=\frac {2 \,{\mathrm e}^{2 t} c_{1}^{2}}{-1+{\mathrm e}^{2 t} c_{1}^{2}} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} x &= \frac {2 \,{\mathrm e}^{2 t} c_{1}^{2}}{-1+{\mathrm e}^{2 t} c_{1}^{2}} \\ \end{align*}

Figure 7: Slope field plot

Verification of solutions

\[ x = \frac {2 \,{\mathrm e}^{2 t} c_{1}^{2}}{-1+{\mathrm e}^{2 t} c_{1}^{2}} \] Verified OK.

2.2.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{\prime }-x \left (2-x\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & x^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & x^{\prime }=x \left (2-x\right ) \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {x^{\prime }}{x \left (2-x\right )}=1 \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} t \\ {} & {} & \int \frac {x^{\prime }}{x \left (2-x\right )}d t =\int 1d t +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & -\frac {\ln \left (x-2\right )}{2}+\frac {\ln \left (x\right )}{2}=t +c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} x \\ {} & {} & x=\frac {2 \,{\mathrm e}^{2 t +2 c_{1}}}{-1+{\mathrm e}^{2 t +2 c_{1}}} \end {array} \]

Maple trace

`Methods for first order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying 1st order linear 
trying Bernoulli 
<- Bernoulli successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(x(t),t)=x(t)*(2-x(t)),x(t), singsol=all)
 

\[ x \left (t \right ) = \frac {2}{1+2 \,{\mathrm e}^{-2 t} c_{1}} \]

Solution by Mathematica

Time used: 0.503 (sec). Leaf size: 36

DSolve[x'[t]==x[t]*(2-x[t]),x[t],t,IncludeSingularSolutions -> True]
 

\begin{align*} x(t)\to \frac {2 e^{2 t}}{e^{2 t}+e^{2 c_1}} \\ x(t)\to 0 \\ x(t)\to 2 \\ \end{align*}