10.3 problem 17.3

Internal problem ID [12049]
Internal file name [OUTPUT/10702_Sunday_September_03_2023_12_36_42_PM_41693741/index.tex]

Book: AN INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS by JAMES C. ROBINSON. Cambridge University Press 2004
Section: Chapter 17, Reduction of order. Exercises page 162
Problem number: 17.3.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "reduction_of_order"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {\left (\cos \left (t \right ) t -\sin \left (t \right )\right ) x^{\prime \prime }-x^{\prime } t \sin \left (t \right )-x \sin \left (t \right )=0} \] Given that one solution of the ode is \begin {align*} x_1 &= t \end {align*}

Given one basis solution \(x_{1}\left (t \right )\), then the second basis solution is given by \[ x_{2}\left (t \right ) = x_{1} \left (\int \frac {{\mathrm e}^{-\left (\int p d t \right )}}{x_{1}^{2}}d t \right ) \] Where \(p(x)\) is the coefficient of \(x^{\prime }\) when the ode is written in the normal form \[ x^{\prime \prime }+p \left (t \right ) x^{\prime }+q \left (t \right ) x = f \left (t \right ) \] Looking at the ode to solve shows that \[ p \left (t \right ) = -\frac {\sin \left (t \right ) t}{\cos \left (t \right ) t -\sin \left (t \right )} \] Therefore \begin{align*} x_{2}\left (t \right ) &= t \left (\int \frac {{\mathrm e}^{-\left (\int -\frac {\sin \left (t \right ) t}{\cos \left (t \right ) t -\sin \left (t \right )}d t \right )}}{t^{2}}d t \right ) \\ x_{2}\left (t \right ) &= t \int \frac {\frac {1}{\cos \left (t \right ) t -\sin \left (t \right )}}{t^{2}} , dt \\ x_{2}\left (t \right ) &= t \left (\int \frac {1}{t^{2} \left (\cos \left (t \right ) t -\sin \left (t \right )\right )}d t \right ) \\ x_{2}\left (t \right ) &= t \left (\int \frac {1}{t^{2} \left (\cos \left (t \right ) t -\sin \left (t \right )\right )}d t \right ) \\ \end{align*} Hence the solution is \begin{align*} x &= c_{1} x_{1}\left (t \right )+c_{2} x_{2}\left (t \right ) \\ &= c_{1} t +c_{2} t \left (\int \frac {1}{t^{2} \left (\cos \left (t \right ) t -\sin \left (t \right )\right )}d t \right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} x &= c_{1} t +c_{2} t \left (\int \frac {1}{t^{2} \left (\cos \left (t \right ) t -\sin \left (t \right )\right )}d t \right ) \\ \end{align*}

Verification of solutions

\[ x = c_{1} t +c_{2} t \left (\int \frac {1}{t^{2} \left (\cos \left (t \right ) t -\sin \left (t \right )\right )}d t \right ) \] Verified OK.

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
-> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
-> Trying changes of variables to rationalize or make the ODE simpler 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
   -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      trying 2nd order exact linear 
      trying symmetries linear in x and y(x) 
      trying to convert to a linear ODE with constant coefficients 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
   -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      trying 2nd order exact linear 
      trying symmetries linear in x and y(x) 
      trying to convert to a linear ODE with constant coefficients 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
   -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      trying 2nd order exact linear 
      trying symmetries linear in x and y(x) 
      trying to convert to a linear ODE with constant coefficients 
<- unable to find a useful change of variables 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   trying differential order: 2; exact nonlinear 
   trying symmetries linear in x and y(x) 
   trying to convert to a linear ODE with constant coefficients 
   trying 2nd order, integrating factor of the form mu(x,y) 
   trying a symmetry of the form [xi=0, eta=F(x)] 
   checking if the LODE is missing y 
   -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
   -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
   -> Trying changes of variables to rationalize or make the ODE simpler 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
      trying a symmetry of the form [xi=0, eta=F(x)] 
      checking if the LODE is missing y 
      -> Heun: Equivalence to the GHE or one of its 4 confluent cases under a power @ Moebius 
      -> trying a solution of the form r0(x) * Y + r1(x) * Y where Y = exp(int(r(x), dx)) * 2F1([a1, a2], [b1], f) 
         trying a symmetry of the form [xi=0, eta=F(x)] 
         trying 2nd order exact linear 
         trying symmetries linear in x and y(x) 
         trying to convert to a linear ODE with constant coefficients 
   <- unable to find a useful change of variables 
      trying a symmetry of the form [xi=0, eta=F(x)] 
   trying to convert to an ODE of Bessel type 
   -> trying reduction of order to Riccati 
      trying Riccati sub-methods: 
         trying Riccati_symmetries 
         -> trying a symmetry pattern of the form [F(x)*G(y), 0] 
         -> trying a symmetry pattern of the form [0, F(x)*G(y)] 
         -> trying a symmetry pattern of the form [F(x),G(x)*y+H(x)] 
   -> trying with_periodic_functions in the coefficients 
      --- Trying Lie symmetry methods, 2nd order --- 
      `, `-> Computing symmetries using: way = 5`[0, x]
 

Solution by Maple

dsolve([(t*cos(t)-sin(t))*diff(x(t),t$2)-diff(x(t),t)*t*sin(t)-x(t)*sin(t)=0,t],singsol=all)
 

\[ \text {No solution found} \]

Solution by Mathematica

Time used: 0.0 (sec). Leaf size: 0

DSolve[(t*Cos[t]-Sin[t])*x''[t]-x'[t]*t*Sin[t]-x[t]*Sin[t]==0,x[t],t,IncludeSingularSolutions -> True]
 

Not solved