4.18 problem Problem 3(d)

4.18.1 Existence and uniqueness analysis
4.18.2 Maple step by step solution

Internal problem ID [12325]
Internal file name [OUTPUT/10978_Monday_October_02_2023_02_47_40_AM_43400438/index.tex]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section: Chapter 5.6 Laplace transform. Nonhomogeneous equations. Problems page 368
Problem number: Problem 3(d).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second_order_laplace", "second_order_linear_constant_coeff", "linear_second_order_ode_solved_by_an_integrating_factor"

Maple gives the following as the ode type

[[_2nd_order, _linear, _nonhomogeneous]]

\[ \boxed {y^{\prime \prime }+2 y^{\prime }+y=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right )} \] With initial conditions \begin {align*} [y \left (0\right ) = 1, y^{\prime }\left (0\right ) = -1] \end {align*}

4.18.1 Existence and uniqueness analysis

This is a linear ODE. In canonical form it is written as \begin {align*} y^{\prime \prime } + p(t)y^{\prime } + q(t) y &= F \end {align*}

Where here \begin {align*} p(t) &=2\\ q(t) &=1\\ F &=\operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \end {align*}

Hence the ode is \begin {align*} y^{\prime \prime }+2 y^{\prime }+y = \operatorname {Heaviside}\left (t \right )-\operatorname {Heaviside}\left (t -1\right ) \end {align*}

The domain of \(p(t)=2\) is \[ \{-\infty

Solving using the Laplace transform method. Let \begin {align*} \mathcal {L}\left (y\right ) =Y(s) \end {align*}

Taking the Laplace transform of the ode and using the relations that \begin {align*} \mathcal {L}\left (y^{\prime }\right ) &= s Y(s) - y \left (0\right )\\ \mathcal {L}\left (y^{\prime \prime }\right ) &= s^2 Y(s) - y'(0) - s y \left (0\right ) \end {align*}

The given ode now becomes an algebraic equation in the Laplace domain \begin {align*} s^{2} Y \left (s \right )-y^{\prime }\left (0\right )-s y \left (0\right )+2 s Y \left (s \right )-2 y \left (0\right )+Y \left (s \right ) = \frac {1-{\mathrm e}^{-s}}{s}\tag {1} \end {align*}

But the initial conditions are \begin {align*} y \left (0\right )&=1\\ y'(0) &=-1 \end {align*}

Substituting these initial conditions in above in Eq (1) gives \begin {align*} s^{2} Y \left (s \right )-1-s +2 s Y \left (s \right )+Y \left (s \right ) = \frac {1-{\mathrm e}^{-s}}{s} \end {align*}

Solving the above equation for \(Y(s)\) results in \begin {align*} Y(s) = -\frac {-s^{2}+{\mathrm e}^{-s}-s -1}{s \left (s^{2}+2 s +1\right )} \end {align*}

Taking the inverse Laplace transform gives \begin {align*} y&= \mathcal {L}^{-1}\left (Y(s)\right )\\ &= \mathcal {L}^{-1}\left (-\frac {-s^{2}+{\mathrm e}^{-s}-s -1}{s \left (s^{2}+2 s +1\right )}\right )\\ &= \operatorname {Heaviside}\left (1-t \right )+t \left ({\mathrm e}^{1-t} \operatorname {Heaviside}\left (t -1\right )-{\mathrm e}^{-t}\right ) \end {align*}

Converting the above solution to piecewise it becomes \[ y = \left \{\begin {array}{cc} 1-t \,{\mathrm e}^{-t} & t <1 \\ 2-{\mathrm e}^{-1} & t =1 \\ t \left (-{\mathrm e}^{-t}+{\mathrm e}^{1-t}\right ) & 1

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \left \{\begin {array}{cc} 1-t \,{\mathrm e}^{-t} & t <1 \\ 2-{\mathrm e}^{-1} & t &=1 \\ t \left (-{\mathrm e}^{-t}+{\mathrm e}^{1-t}\right ) & 1

Verification of solutions

\[ y = \left \{\begin {array}{cc} 1-t \,{\mathrm e}^{-t} & t <1 \\ 2-{\mathrm e}^{-1} & t =1 \\ t \left (-{\mathrm e}^{-t}+{\mathrm e}^{1-t}\right ) & 1

4.18.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime \prime }+2 y^{\prime }+y=\mathit {Heaviside}\left (t \right )-\mathit {Heaviside}\left (t -1\right ), y \left (0\right )=1, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=-1\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Characteristic polynomial of homogeneous ODE}\hspace {3pt} \\ {} & {} & r^{2}+2 r +1=0 \\ \bullet & {} & \textrm {Factor the characteristic polynomial}\hspace {3pt} \\ {} & {} & \left (r +1\right )^{2}=0 \\ \bullet & {} & \textrm {Root of the characteristic polynomial}\hspace {3pt} \\ {} & {} & r =-1 \\ \bullet & {} & \textrm {1st solution of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y_{1}\left (t \right )={\mathrm e}^{-t} \\ \bullet & {} & \textrm {Repeated root, multiply}\hspace {3pt} y_{1}\left (t \right )\hspace {3pt}\textrm {by}\hspace {3pt} t \hspace {3pt}\textrm {to ensure linear independence}\hspace {3pt} \\ {} & {} & y_{2}\left (t \right )=t \,{\mathrm e}^{-t} \\ \bullet & {} & \textrm {General solution of the ODE}\hspace {3pt} \\ {} & {} & y=c_{1} y_{1}\left (t \right )+c_{2} y_{2}\left (t \right )+y_{p}\left (t \right ) \\ \bullet & {} & \textrm {Substitute in solutions of the homogeneous ODE}\hspace {3pt} \\ {} & {} & y=c_{1} {\mathrm e}^{-t}+c_{2} t \,{\mathrm e}^{-t}+y_{p}\left (t \right ) \\ \square & {} & \textrm {Find a particular solution}\hspace {3pt} y_{p}\left (t \right )\hspace {3pt}\textrm {of the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Use variation of parameters to find}\hspace {3pt} y_{p}\hspace {3pt}\textrm {here}\hspace {3pt} f \left (t \right )\hspace {3pt}\textrm {is the forcing function}\hspace {3pt} \\ {} & {} & \left [y_{p}\left (t \right )=-y_{1}\left (t \right ) \left (\int \frac {y_{2}\left (t \right ) f \left (t \right )}{W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )}d t \right )+y_{2}\left (t \right ) \left (\int \frac {y_{1}\left (t \right ) f \left (t \right )}{W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )}d t \right ), f \left (t \right )=\mathit {Heaviside}\left (t \right )-\mathit {Heaviside}\left (t -1\right )\right ] \\ {} & \circ & \textrm {Wronskian of solutions of the homogeneous equation}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )=\left [\begin {array}{cc} {\mathrm e}^{-t} & t \,{\mathrm e}^{-t} \\ -{\mathrm e}^{-t} & {\mathrm e}^{-t}-t \,{\mathrm e}^{-t} \end {array}\right ] \\ {} & \circ & \textrm {Compute Wronskian}\hspace {3pt} \\ {} & {} & W \left (y_{1}\left (t \right ), y_{2}\left (t \right )\right )={\mathrm e}^{-2 t} \\ {} & \circ & \textrm {Substitute functions into equation for}\hspace {3pt} y_{p}\left (t \right ) \\ {} & {} & y_{p}\left (t \right )={\mathrm e}^{-t} \left (-\left (\int \left (\mathit {Heaviside}\left (t \right )-\mathit {Heaviside}\left (t -1\right )\right ) t \,{\mathrm e}^{t}d t \right )+\left (\int \left (\mathit {Heaviside}\left (t \right )-\mathit {Heaviside}\left (t -1\right )\right ) {\mathrm e}^{t}d t \right ) t \right ) \\ {} & \circ & \textrm {Compute integrals}\hspace {3pt} \\ {} & {} & y_{p}\left (t \right )=t \,{\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )-\mathit {Heaviside}\left (t -1\right )+\left (-t -1\right ) \mathit {Heaviside}\left (t \right ) {\mathrm e}^{-t}+\mathit {Heaviside}\left (t \right ) \\ \bullet & {} & \textrm {Substitute particular solution into general solution to ODE}\hspace {3pt} \\ {} & {} & y=c_{1} {\mathrm e}^{-t}+c_{2} t \,{\mathrm e}^{-t}+t \,{\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )-\mathit {Heaviside}\left (t -1\right )+\left (-t -1\right ) \mathit {Heaviside}\left (t \right ) {\mathrm e}^{-t}+\mathit {Heaviside}\left (t \right ) \\ \square & {} & \textrm {Check validity of solution}\hspace {3pt} y=c_{1} {\mathrm e}^{-t}+c_{2} t {\mathrm e}^{-t}+t {\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )-\mathit {Heaviside}\left (t -1\right )+\left (-t -1\right ) \mathit {Heaviside}\left (t \right ) {\mathrm e}^{-t}+\mathit {Heaviside}\left (t \right ) \\ {} & \circ & \textrm {Use initial condition}\hspace {3pt} y \left (0\right )=1 \\ {} & {} & 1=c_{1} \\ {} & \circ & \textrm {Compute derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=-c_{1} {\mathrm e}^{-t}+c_{2} {\mathrm e}^{-t}-c_{2} t \,{\mathrm e}^{-t}+{\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )-t \,{\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )+t \,{\mathrm e}^{1-t} \mathit {Dirac}\left (t -1\right )-\mathit {Dirac}\left (t -1\right )-\mathit {Heaviside}\left (t \right ) {\mathrm e}^{-t}+\left (-t -1\right ) \mathit {Dirac}\left (t \right ) {\mathrm e}^{-t}-\left (-t -1\right ) \mathit {Heaviside}\left (t \right ) {\mathrm e}^{-t}+\mathit {Dirac}\left (t \right ) \\ {} & \circ & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=-1 \\ {} & {} & -1=-c_{1} +c_{2} \\ {} & \circ & \textrm {Solve for}\hspace {3pt} c_{1} \hspace {3pt}\textrm {and}\hspace {3pt} c_{2} \\ {} & {} & \left \{c_{1} =1, c_{2} =0\right \} \\ {} & \circ & \textrm {Substitute constant values into general solution and simplify}\hspace {3pt} \\ {} & {} & y=t \,{\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )+\left (1+\mathit {Heaviside}\left (t \right ) \left (-t -1\right )\right ) {\mathrm e}^{-t}+\mathit {Heaviside}\left (t \right )-\mathit {Heaviside}\left (t -1\right ) \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=t \,{\mathrm e}^{1-t} \mathit {Heaviside}\left (t -1\right )+\left (1+\mathit {Heaviside}\left (t \right ) \left (-t -1\right )\right ) {\mathrm e}^{-t}+\mathit {Heaviside}\left (t \right )-\mathit {Heaviside}\left (t -1\right ) \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
trying a double symmetry of the form [xi=0, eta=F(x)] 
-> Try solving first the homogeneous part of the ODE 
   checking if the LODE has constant coefficients 
   <- constant coefficients successful 
<- solving first the homogeneous part of the ODE successful`
 

Solution by Maple

Time used: 4.985 (sec). Leaf size: 31

dsolve([diff(y(t),t$2)+2*diff(y(t),t)+y(t)=Heaviside(t)-Heaviside(t-1),y(0) = 1, D(y)(0) = -1],y(t), singsol=all)
 

\[ y \left (t \right ) = t \operatorname {Heaviside}\left (t -1\right ) {\mathrm e}^{-t +1}-t \,{\mathrm e}^{-t}+1-\operatorname {Heaviside}\left (t -1\right ) \]

Solution by Mathematica

Time used: 0.072 (sec). Leaf size: 43

DSolve[{y''[t]+2*y'[t]+y[t]==UnitStep[t]-UnitStep[t-1],{y[0]==1,y'[0]==-1}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to \begin {array}{cc} \{ & \begin {array}{cc} e^{-t} & t<0 \\ 1-e^{-t} t & 0\leq t\leq 1 \\ (-1+e) e^{-t} t & \text {True} \\ \end {array} \\ \end {array} \]