2.36 problem Problem 18(a)

2.36.1 Solving as second order integrable as is ode
2.36.2 Solving as type second_order_integrable_as_is (not using ABC version)
2.36.3 Solving using Kovacic algorithm
2.36.4 Solving as exact linear second order ode ode
2.36.5 Maple step by step solution

Internal problem ID [12256]
Internal file name [OUTPUT/10909_Thursday_September_28_2023_01_08_29_AM_30621015/index.tex]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section: Chapter 4, Second and Higher Order Linear Differential Equations. Problems page 221
Problem number: Problem 18(a).
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "kovacic", "exact linear second order ode", "second_order_integrable_as_is"

Maple gives the following as the ode type

[[_2nd_order, _exact, _linear, _homogeneous]]

\[ \boxed {y^{\prime \prime }+2 x y^{\prime }+2 y=0} \]

2.36.1 Solving as second order integrable as is ode

Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (y^{\prime \prime }+2 x y^{\prime }+2 y\right )d x &= 0 \\ 2 x y+y^{\prime } = c_{1} \end {align*}

Which is now solved for \(y\).

Entering Linear first order ODE solver. In canonical form a linear first order is \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=2 x\\ q(x) &=c_{1} \end {align*}

Hence the ode is \begin {align*} 2 x y+y^{\prime } = c_{1} \end {align*}

The integrating factor \(\mu \) is \begin{align*} \mu &= {\mathrm e}^{\int 2 x d x} \\ &= {\mathrm e}^{x^{2}} \\ \end{align*} The ode becomes \begin {align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (c_{1}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x^{2}} y\right ) &= \left ({\mathrm e}^{x^{2}}\right ) \left (c_{1}\right )\\ \mathrm {d} \left ({\mathrm e}^{x^{2}} y\right ) &= \left (c_{1} {\mathrm e}^{x^{2}}\right )\, \mathrm {d} x \end {align*}

Integrating gives \begin {align*} {\mathrm e}^{x^{2}} y &= \int {c_{1} {\mathrm e}^{x^{2}}\,\mathrm {d} x}\\ {\mathrm e}^{x^{2}} y &= \frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2} + c_{2} \end {align*}

Dividing both sides by the integrating factor \(\mu ={\mathrm e}^{x^{2}}\) results in \begin {align*} y &= \frac {{\mathrm e}^{-x^{2}} c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} {\mathrm e}^{-x^{2}} \end {align*}

which simplifies to \begin {align*} y &= {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \] Verified OK.

2.36.2 Solving as type second_order_integrable_as_is (not using ABC version)

Writing the ode as \[ y^{\prime \prime }+2 x y^{\prime }+2 y = 0 \] Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (y^{\prime \prime }+2 x y^{\prime }+2 y\right )d x &= 0 \\ 2 x y+y^{\prime } = c_{1} \end {align*}

Which is now solved for \(y\).

Entering Linear first order ODE solver. In canonical form a linear first order is \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=2 x\\ q(x) &=c_{1} \end {align*}

Hence the ode is \begin {align*} 2 x y+y^{\prime } = c_{1} \end {align*}

The integrating factor \(\mu \) is \begin{align*} \mu &= {\mathrm e}^{\int 2 x d x} \\ &= {\mathrm e}^{x^{2}} \\ \end{align*} The ode becomes \begin {align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (c_{1}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x^{2}} y\right ) &= \left ({\mathrm e}^{x^{2}}\right ) \left (c_{1}\right )\\ \mathrm {d} \left ({\mathrm e}^{x^{2}} y\right ) &= \left (c_{1} {\mathrm e}^{x^{2}}\right )\, \mathrm {d} x \end {align*}

Integrating gives \begin {align*} {\mathrm e}^{x^{2}} y &= \int {c_{1} {\mathrm e}^{x^{2}}\,\mathrm {d} x}\\ {\mathrm e}^{x^{2}} y &= \frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2} + c_{2} \end {align*}

Dividing both sides by the integrating factor \(\mu ={\mathrm e}^{x^{2}}\) results in \begin {align*} y &= \frac {{\mathrm e}^{-x^{2}} c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} {\mathrm e}^{-x^{2}} \end {align*}

which simplifies to \begin {align*} y &= {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \] Verified OK.

2.36.3 Solving using Kovacic algorithm

Writing the ode as \begin {align*} y^{\prime \prime }+2 x y^{\prime }+2 y &= 0 \tag {1} \\ A y^{\prime \prime } + B y^{\prime } + C y &= 0 \tag {2} \end {align*}

Comparing (1) and (2) shows that \begin {align*} A &= 1 \\ B &= 2 x\tag {3} \\ C &= 2 \end {align*}

Applying the Liouville transformation on the dependent variable gives \begin {align*} z(x) &= y e^{\int \frac {B}{2 A} \,dx} \end {align*}

Then (2) becomes \begin {align*} z''(x) = r z(x)\tag {4} \end {align*}

Where \(r\) is given by \begin {align*} r &= \frac {s}{t}\tag {5} \\ &= \frac {2 A B' - 2 B A' + B^2 - 4 A C}{4 A^2} \end {align*}

Substituting the values of \(A,B,C\) from (3) in the above and simplifying gives \begin {align*} r &= \frac {x^{2}-1}{1}\tag {6} \end {align*}

Comparing the above to (5) shows that \begin {align*} s &= x^{2}-1\\ t &= 1 \end {align*}

Therefore eq. (4) becomes \begin {align*} z''(x) &= \left ( x^{2}-1\right ) z(x)\tag {7} \end {align*}

Equation (7) is now solved. After finding \(z(x)\) then \(y\) is found using the inverse transformation \begin {align*} y &= z \left (x \right ) e^{-\int \frac {B}{2 A} \,dx} \end {align*}

The first step is to determine the case of Kovacic algorithm this ode belongs to. There are 3 cases depending on the order of poles of \(r\) and the order of \(r\) at \(\infty \). The following table summarizes these cases.

Case

Allowed pole order for \(r\)

Allowed value for \(\mathcal {O}(\infty )\)

1

\(\left \{ 0,1,2,4,6,8,\cdots \right \} \)

\(\left \{ \cdots ,-6,-4,-2,0,2,3,4,5,6,\cdots \right \} \)

2

Need to have at least one pole that is either order \(2\) or odd order greater than \(2\). Any other pole order is allowed as long as the above condition is satisfied. Hence the following set of pole orders are all allowed. \(\{1,2\}\),\(\{1,3\}\),\(\{2\}\),\(\{3\}\),\(\{3,4\}\),\(\{1,2,5\}\).

no condition

3

\(\left \{ 1,2\right \} \)

\(\left \{ 2,3,4,5,6,7,\cdots \right \} \)

Table 22: Necessary conditions for each Kovacic case

The order of \(r\) at \(\infty \) is the degree of \(t\) minus the degree of \(s\). Therefore \begin {align*} O\left (\infty \right ) &= \text {deg}(t) - \text {deg}(s) \\ &= 0 - 2 \\ &= -2 \end {align*}

There are no poles in \(r\). Therefore the set of poles \(\Gamma \) is empty. Since there is no odd order pole larger than \(2\) and the order at \(\infty \) is \(-2\) then the necessary conditions for case one are met. Therefore \begin {align*} L &= [1] \end {align*}

Attempting to find a solution using case \(n=1\).

Since the order of \(r\) at \(\infty \) is \(O_r(\infty ) = -2\) then \begin {alignat*} {3} v &= \frac {-O_r(\infty )}{2} &&= \frac {2}{2} &&= 1 \end {alignat*}

\([\sqrt r]_\infty \) is the sum of terms involving \(x^i\) for \(0\leq i \leq v\) in the Laurent series for \(\sqrt r\) at \(\infty \). Therefore \begin {align*} [\sqrt r]_\infty &= \sum _{i=0}^{v} a_i x^i \\ &= \sum _{i=0}^{1} a_i x^i \tag {8} \end {align*}

Let \(a\) be the coefficient of \(x^v=x^1\) in the above sum. The Laurent series of \(\sqrt r\) at \(\infty \) is \[ \sqrt r \approx x -\frac {1}{2 x}-\frac {1}{8 x^{3}}-\frac {1}{16 x^{5}}-\frac {5}{128 x^{7}}-\frac {7}{256 x^{9}}-\frac {21}{1024 x^{11}}-\frac {33}{2048 x^{13}} + \dots \tag {9} \] Comparing Eq. (9) with Eq. (8) shows that \[ a = 1 \] From Eq. (9) the sum up to \(v=1\) gives \begin {align*} [\sqrt r]_\infty &= \sum _{i=0}^{1} a_i x^i \\ &= x \tag {10} \end {align*}

Now we need to find \(b\), where \(b\) be the coefficient of \(x^{v-1} = x^{0}=1\) in \(r\) minus the coefficient of same term but in \(\left ( [\sqrt r]_\infty \right )^2 \) where \([\sqrt r]_\infty \) was found above in Eq (10). Hence \[ \left ( [\sqrt r]_\infty \right )^2 = x^{2} \] This shows that the coefficient of \(1\) in the above is \(0\). Now we need to find the coefficient of \(1\) in \(r\). How this is done depends on if \(v=0\) or not. Since \(v=1\) which is not zero, then starting \(r=\frac {s}{t}\), we do long division and write this in the form \[ r = Q + \frac {R}{t} \] Where \(Q\) is the quotient and \(R\) is the remainder. Then the coefficient of \(1\) in \(r\) will be the coefficient this term in the quotient. Doing long division gives \begin {align*} r &= \frac {s}{t} \\ &= \frac {x^{2}-1}{1} \\ &= Q + \frac {R}{1} \\ &= \left (x^{2}-1\right ) + \left ( 0\right ) \\ &= x^{2}-1 \end {align*}

We see that the coefficient of the term \(\frac {1}{x}\) in the quotient is \(-1\). Now \(b\) can be found. \begin {align*} b &= \left (-1\right )-\left (0\right )\\ &= -1 \end {align*}

Hence \begin {alignat*} {3} [\sqrt r]_\infty &= x\\ \alpha _{\infty }^{+} &= \frac {1}{2} \left ( \frac {b}{a} - v \right ) &&= \frac {1}{2} \left ( \frac {-1}{1} - 1 \right ) &&= -1\\ \alpha _{\infty }^{-} &= \frac {1}{2} \left ( -\frac {b}{a} - v \right ) &&= \frac {1}{2} \left ( -\frac {-1}{1} - 1 \right ) &&= 0 \end {alignat*}

The following table summarizes the findings so far for poles and for the order of \(r\) at \(\infty \) where \(r\) is \[ r=x^{2}-1 \]

Order of \(r\) at \(\infty \) \([\sqrt r]_\infty \) \(\alpha _\infty ^{+}\) \(\alpha _\infty ^{-}\)
\(-2\) \(x\) \(-1\) \(0\)

Now that the all \([\sqrt r]_c\) and its associated \(\alpha _c^{\pm }\) have been determined for all the poles in the set \(\Gamma \) and \([\sqrt r]_\infty \) and its associated \(\alpha _\infty ^{\pm }\) have also been found, the next step is to determine possible non negative integer \(d\) from these using \begin {align*} d &= \alpha _\infty ^{s(\infty )} - \sum _{c \in \Gamma } \alpha _c^{s(c)} \end {align*}

Where \(s(c)\) is either \(+\) or \(-\) and \(s(\infty )\) is the sign of \(\alpha _\infty ^{\pm }\). This is done by trial over all set of families \(s=(s(c))_{c \in \Gamma \cup {\infty }}\) until such \(d\) is found to work in finding candidate \(\omega \). Trying \(\alpha _\infty ^{-} = 0\), and since there are no poles then \begin {align*} d &= \alpha _\infty ^{-} \\ &= 0 \end {align*}

Since \(d\) an integer and \(d \geq 0\) then it can be used to find \(\omega \) using \begin {align*} \omega &= \sum _{c \in \Gamma } \left ( s(c) [\sqrt r]_c + \frac {\alpha _c^{s(c)}}{x-c} \right ) + s(\infty ) [\sqrt r]_\infty \end {align*}

The above gives \begin {align*} \omega &= (-) [\sqrt r]_\infty \\ &= 0 + (-) \left ( x \right ) \\ &= -x\\ &= -x \end {align*}

Now that \(\omega \) is determined, the next step is find a corresponding minimal polynomial \(p(x)\) of degree \(d=0\) to solve the ode. The polynomial \(p(x)\) needs to satisfy the equation \begin {align*} p'' + 2 \omega p' + \left ( \omega ' +\omega ^2 -r\right ) p = 0 \tag {1A} \end {align*}

Let \begin {align*} p(x) &= 1\tag {2A} \end {align*}

Substituting the above in eq. (1A) gives \begin {align*} \left (0\right ) + 2 \left (-x\right ) \left (0\right ) + \left ( \left (-1\right ) + \left (-x\right )^2 - \left (x^{2}-1\right ) \right ) &= 0\\ 0 = 0 \end {align*}

The equation is satisfied since both sides are zero. Therefore the first solution to the ode \(z'' = r z\) is \begin {align*} z_1(x) &= p e^{ \int \omega \,dx} \\ &= {\mathrm e}^{\int -x d x}\\ &= {\mathrm e}^{-\frac {x^{2}}{2}} \end {align*}

The first solution to the original ode in \(y\) is found from \begin{align*} y_1 &= z_1 e^{ \int -\frac {1}{2} \frac {B}{A} \,dx} \\ &= z_1 e^{ -\int \frac {1}{2} \frac {2 x}{1} \,dx} \\ &= z_1 e^{-\frac {x^{2}}{2}} \\ &= z_1 \left ({\mathrm e}^{-\frac {x^{2}}{2}}\right ) \\ \end{align*} Which simplifies to \[ y_1 = {\mathrm e}^{-x^{2}} \] The second solution \(y_2\) to the original ode is found using reduction of order \[ y_2 = y_1 \int \frac { e^{\int -\frac {B}{A} \,dx}}{y_1^2} \,dx \] Substituting gives \begin{align*} y_2 &= y_1 \int \frac { e^{\int -\frac {2 x}{1} \,dx}}{\left (y_1\right )^2} \,dx \\ &= y_1 \int \frac { e^{-x^{2}}}{\left (y_1\right )^2} \,dx \\ &= y_1 \left (\frac {\sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}\right ) \\ \end{align*} Therefore the solution is

\begin{align*} y &= c_{1} y_1 + c_{2} y_2 \\ &= c_{1} \left ({\mathrm e}^{-x^{2}}\right ) + c_{2} \left ({\mathrm e}^{-x^{2}}\left (\frac {\sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{-x^{2}}+\frac {c_{2} {\mathrm e}^{-x^{2}} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2} \\ \end{align*}

Verification of solutions

\[ y = c_{1} {\mathrm e}^{-x^{2}}+\frac {c_{2} {\mathrm e}^{-x^{2}} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2} \] Verified OK.

2.36.4 Solving as exact linear second order ode ode

An ode of the form \begin {align*} p \left (x \right ) y^{\prime \prime }+q \left (x \right ) y^{\prime }+r \left (x \right ) y&=s \left (x \right ) \end {align*}

is exact if \begin {align*} p''(x) - q'(x) + r(x) &= 0 \tag {1} \end {align*}

For the given ode we have \begin {align*} p(x) &= 1\\ q(x) &= 2 x\\ r(x) &= 2\\ s(x) &= 0 \end {align*}

Hence \begin {align*} p''(x) &= 0\\ q'(x) &= 2 \end {align*}

Therefore (1) becomes \begin {align*} 0- \left (2\right ) + \left (2\right )&=0 \end {align*}

Hence the ode is exact. Since we now know the ode is exact, it can be written as \begin {align*} \left (p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y\right )' &= s(x) \end {align*}

Integrating gives \begin {align*} p \left (x \right ) y^{\prime }+\left (q \left (x \right )-p^{\prime }\left (x \right )\right ) y&=\int {s \left (x \right )\, dx} \end {align*}

Substituting the above values for \(p,q,r,s\) gives \begin {align*} 2 x y+y^{\prime }&=c_{1} \end {align*}

We now have a first order ode to solve which is \begin {align*} 2 x y+y^{\prime } = c_{1} \end {align*}

Entering Linear first order ODE solver. In canonical form a linear first order is \begin {align*} y^{\prime } + p(x)y &= q(x) \end {align*}

Where here \begin {align*} p(x) &=2 x\\ q(x) &=c_{1} \end {align*}

Hence the ode is \begin {align*} 2 x y+y^{\prime } = c_{1} \end {align*}

The integrating factor \(\mu \) is \begin{align*} \mu &= {\mathrm e}^{\int 2 x d x} \\ &= {\mathrm e}^{x^{2}} \\ \end{align*} The ode becomes \begin {align*} \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}}\left ( \mu y\right ) &= \left (\mu \right ) \left (c_{1}\right ) \\ \frac {\mathop {\mathrm {d}}}{ \mathop {\mathrm {d}x}} \left ({\mathrm e}^{x^{2}} y\right ) &= \left ({\mathrm e}^{x^{2}}\right ) \left (c_{1}\right )\\ \mathrm {d} \left ({\mathrm e}^{x^{2}} y\right ) &= \left (c_{1} {\mathrm e}^{x^{2}}\right )\, \mathrm {d} x \end {align*}

Integrating gives \begin {align*} {\mathrm e}^{x^{2}} y &= \int {c_{1} {\mathrm e}^{x^{2}}\,\mathrm {d} x}\\ {\mathrm e}^{x^{2}} y &= \frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2} + c_{2} \end {align*}

Dividing both sides by the integrating factor \(\mu ={\mathrm e}^{x^{2}}\) results in \begin {align*} y &= \frac {{\mathrm e}^{-x^{2}} c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} {\mathrm e}^{-x^{2}} \end {align*}

which simplifies to \begin {align*} y &= {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{-x^{2}} \left (\frac {c_{1} \sqrt {\pi }\, \operatorname {erfi}\left (x \right )}{2}+c_{2} \right ) \] Verified OK.

2.36.5 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }+2 x y^{\prime }+2 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & \frac {d}{d x}y^{\prime } \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k} \\ \square & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} k \,x^{k} \\ {} & \circ & \textrm {Convert}\hspace {3pt} \frac {d}{d x}y^{\prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =2}{\sum }}a_{k} k \left (k -1\right ) x^{k -2} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +2 \\ {} & {} & \frac {d}{d x}y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k +2} \left (k +2\right ) \left (k +1\right ) x^{k} \\ & {} & \textrm {Rewrite DE with series expansions}\hspace {3pt} \\ {} & {} & \moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +2} \left (k +2\right ) \left (k +1\right )+2 a_{k} \left (k +1\right )\right ) x^{k}=0 \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & \left (k +1\right ) \left (a_{k +2} \left (k +2\right )+2 a_{k}\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines the series solution to the ODE}\hspace {3pt} \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k}, a_{k +2}=-\frac {2 a_{k}}{k +2}\right ] \end {array} \]

Maple trace

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
<- linear_1 successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 17

dsolve(diff(y(x),x$2)+2*x*diff(y(x),x)+2*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = {\mathrm e}^{-x^{2}} \left (\operatorname {erfi}\left (x \right ) c_{1} +c_{2} \right ) \]

Solution by Mathematica

Time used: 0.033 (sec). Leaf size: 31

DSolve[y''[x]+2*x*y'[x]+2*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {1}{2} e^{-x^2} \left (\sqrt {\pi } c_1 \text {erfi}(x)+2 c_2\right ) \]