3.20 problem Problem 21

3.20.1 Maple step by step solution

Internal problem ID [12301]
Internal file name [OUTPUT/10954_Saturday_September_30_2023_08_26_36_PM_50568081/index.tex]

Book: APPLIED DIFFERENTIAL EQUATIONS The Primary Course by Vladimir A. Dobrushkin. CRC Press 2015
Section: Chapter 5.5 Laplace transform. Homogeneous equations. Problems page 357
Problem number: Problem 21.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_laplace"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

\[ \boxed {y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime }=0} \] With initial conditions \begin {align*} [y \left (0\right ) = 1, y^{\prime }\left (0\right ) = 1, y^{\prime \prime }\left (0\right ) = -8] \end {align*}

Solving using the Laplace transform method. Let \[ \mathcal {L}\left (y\right ) =Y(s) \] Taking the Laplace transform of the ode and using the relations that \begin {align*} \mathcal {L}\left (y^{\prime }\right )&= s Y(s) - y \left (0\right )\\ \mathcal {L}\left (y^{\prime \prime }\right ) &= s^2 Y(s) - y'(0) - s y \left (0\right )\\ \mathcal {L}\left (y^{\prime \prime \prime }\right ) &= s^3 Y(s) - y''(0) - s y'(0) - s^2 y \left (0\right ) \end {align*}

The given ode becomes an algebraic equation in the Laplace domain \[ s^{3} Y \left (s \right )-y^{\prime \prime }\left (0\right )-s y^{\prime }\left (0\right )-s^{2} y \left (0\right )+8 s^{2} Y \left (s \right )-8 y^{\prime }\left (0\right )-8 s y \left (0\right )+16 s Y \left (s \right )-16 y \left (0\right ) = 0\tag {1} \] But the initial conditions are \begin {align*} y \left (0\right )&=1\\ y^{\prime }\left (0\right )&=1\\ y^{\prime \prime }\left (0\right )&=-8 \end {align*}

Substituting these initial conditions in above in Eq (1) gives \[ s^{3} Y \left (s \right )-16-9 s -s^{2}+8 s^{2} Y \left (s \right )+16 s Y \left (s \right ) = 0 \] Solving the above equation for \(Y(s)\) results in \[ Y(s) = \frac {s^{2}+9 s +16}{s \left (s^{2}+8 s +16\right )} \] Applying partial fractions decomposition results in \[ Y(s)= \frac {1}{s}+\frac {1}{\left (s +4\right )^{2}} \] The inverse Laplace of each term above is now found, which gives \begin {align*} \mathcal {L}^{-1}\left (\frac {1}{s}\right ) &= 1\\ \mathcal {L}^{-1}\left (\frac {1}{\left (s +4\right )^{2}}\right ) &= t \,{\mathrm e}^{-4 t} \end {align*}

Adding the above results and simplifying gives \[ y=1+t \,{\mathrm e}^{-4 t} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= 1+t \,{\mathrm e}^{-4 t} \\ \end{align*}

Figure 37: Solution plot

Verification of solutions

\[ y = 1+t \,{\mathrm e}^{-4 t} \] Verified OK.

3.20.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [y^{\prime \prime \prime }+8 y^{\prime \prime }+16 y^{\prime }=0, y \left (0\right )=1, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=1, y^{\prime \prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=-8\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=y^{\prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{3}^{\prime }\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{3}^{\prime }\left (t \right )=-8 y_{3}\left (t \right )-16 y_{2}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=y_{1}^{\prime }\left (t \right ), y_{3}\left (t \right )=y_{2}^{\prime }\left (t \right ), y_{3}^{\prime }\left (t \right )=-8 y_{3}\left (t \right )-16 y_{2}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -16 & -8 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -16 & -8 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-4, \left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ]\right ], \left [-4, \left [\begin {array}{c} 0 \\ 0 \\ 0 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair, with eigenvalue of algebraic multiplicity 2}\hspace {3pt} \\ {} & {} & \left [-4, \left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {First solution from eigenvalue}\hspace {3pt} -4 \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}\left (t \right )={\mathrm e}^{-4 t}\cdot \left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Form of the 2nd homogeneous solution where}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {is to be solved for,}\hspace {3pt} \lambda =-4\hspace {3pt}\textrm {is the eigenvalue, and}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {is the eigenvector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}\left (t \right )={\mathrm e}^{\lambda t} \left (t {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Note that the}\hspace {3pt} t \hspace {3pt}\textrm {multiplying}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {makes this solution linearly independent to the 1st solution obtained from}\hspace {3pt} \lambda =-4 \\ \bullet & {} & \textrm {Substitute}\hspace {3pt} {\moverset {\rightarrow }{y}}_{2}\left (t \right )\hspace {3pt}\textrm {into the homogeneous system}\hspace {3pt} \\ {} & {} & \lambda \,{\mathrm e}^{\lambda t} \left (t {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right )+{\mathrm e}^{\lambda t} {\moverset {\rightarrow }{v}}=\left ({\mathrm e}^{\lambda t} A \right )\cdot \left (t {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Use the fact that}\hspace {3pt} {\moverset {\rightarrow }{v}}\hspace {3pt}\textrm {is an eigenvector of}\hspace {3pt} A \\ {} & {} & \lambda \,{\mathrm e}^{\lambda t} \left (t {\moverset {\rightarrow }{v}}+{\moverset {\rightarrow }{p}}\right )+{\mathrm e}^{\lambda t} {\moverset {\rightarrow }{v}}={\mathrm e}^{\lambda t} \left (\lambda t {\moverset {\rightarrow }{v}}+A \cdot {\moverset {\rightarrow }{p}}\right ) \\ \bullet & {} & \textrm {Simplify equation}\hspace {3pt} \\ {} & {} & \lambda {\moverset {\rightarrow }{p}}+{\moverset {\rightarrow }{v}}=A \cdot {\moverset {\rightarrow }{p}} \\ \bullet & {} & \textrm {Make use of the identity matrix}\hspace {3pt} \mathrm {I} \\ {} & {} & \left (\lambda \cdot I \right )\cdot {\moverset {\rightarrow }{p}}+{\moverset {\rightarrow }{v}}=A \cdot {\moverset {\rightarrow }{p}} \\ \bullet & {} & \textrm {Condition}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {must meet for}\hspace {3pt} {\moverset {\rightarrow }{y}}_{2}\left (t \right )\hspace {3pt}\textrm {to be a solution to the homogeneous system}\hspace {3pt} \\ {} & {} & \left (A -\lambda \cdot I \right )\cdot {\moverset {\rightarrow }{p}}={\moverset {\rightarrow }{v}} \\ \bullet & {} & \textrm {Choose}\hspace {3pt} {\moverset {\rightarrow }{p}}\hspace {3pt}\textrm {to use in the second solution to the homogeneous system from eigenvalue}\hspace {3pt} -4 \\ {} & {} & \left (\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -16 & -8 \end {array}\right ]-\left (-4\right )\cdot \left [\begin {array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end {array}\right ]\right )\cdot {\moverset {\rightarrow }{p}}=\left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Choice of}\hspace {3pt} {\moverset {\rightarrow }{p}} \\ {} & {} & {\moverset {\rightarrow }{p}}=\left [\begin {array}{c} \frac {1}{64} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Second solution from eigenvalue}\hspace {3pt} -4 \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}\left (t \right )={\mathrm e}^{-4 t}\cdot \left (t \cdot \left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ]+\left [\begin {array}{c} \frac {1}{64} \\ 0 \\ 0 \end {array}\right ]\right ) \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}\left (t \right )+c_{2} {\moverset {\rightarrow }{y}}_{2}\left (t \right )+c_{3} {\moverset {\rightarrow }{y}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\mathrm e}^{-4 t}\cdot \left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ]+c_{2} {\mathrm e}^{-4 t}\cdot \left (t \cdot \left [\begin {array}{c} \frac {1}{16} \\ -\frac {1}{4} \\ 1 \end {array}\right ]+\left [\begin {array}{c} \frac {1}{64} \\ 0 \\ 0 \end {array}\right ]\right )+\left [\begin {array}{c} c_{3} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y=\frac {\left (\left (4 t +1\right ) c_{2} +4 c_{1} \right ) {\mathrm e}^{-4 t}}{64}+c_{3} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y \left (0\right )=1 \\ {} & {} & 1=\frac {c_{2}}{64}+\frac {c_{1}}{16}+c_{3} \\ \bullet & {} & \textrm {Calculate the 1st derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {c_{2} {\mathrm e}^{-4 t}}{16}-\frac {\left (\left (4 t +1\right ) c_{2} +4 c_{1} \right ) {\mathrm e}^{-4 t}}{16} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=1 \\ {} & {} & 1=-\frac {c_{1}}{4} \\ \bullet & {} & \textrm {Calculate the 2nd derivative of the solution}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=-\frac {c_{2} {\mathrm e}^{-4 t}}{2}+\frac {\left (\left (4 t +1\right ) c_{2} +4 c_{1} \right ) {\mathrm e}^{-4 t}}{4} \\ \bullet & {} & \textrm {Use the initial condition}\hspace {3pt} y^{\prime \prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{t \hiderel {=}0\right \}}}}=-8 \\ {} & {} & -8=-\frac {c_{2}}{4}+c_{1} \\ \bullet & {} & \textrm {Solve for the unknown coefficients}\hspace {3pt} \\ {} & {} & \left \{c_{1} =-4, c_{2} =16, c_{3} =1\right \} \\ \bullet & {} & \textrm {Solution to the IVP}\hspace {3pt} \\ {} & {} & y=1+t \,{\mathrm e}^{-4 t} \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 4.594 (sec). Leaf size: 12

dsolve([diff(y(t),t$3)+8*diff(y(t),t$2)+16*diff(y(t),t)=0,y(0) = 1, D(y)(0) = 1, (D@@2)(y)(0) = -8],y(t), singsol=all)
 

\[ y \left (t \right ) = t \,{\mathrm e}^{-4 t}+1 \]

Solution by Mathematica

Time used: 0.083 (sec). Leaf size: 14

DSolve[{y'''[t]+8*y''[t]+16*y'[t]==0,{y[0]==1,y'[0]==1,y''[0]==-8}},y[t],t,IncludeSingularSolutions -> True]
 

\[ y(t)\to e^{-4 t} t+1 \]