2.31 problem 31

2.31.1 Maple step by step solution

Internal problem ID [5586]
Internal file name [OUTPUT/4834_Sunday_June_05_2022_03_07_24_PM_77989509/index.tex]

Book: A FIRST COURSE IN DIFFERENTIAL EQUATIONS with Modeling Applications. Dennis G. Zill. 9th edition. Brooks/Cole. CA, USA.
Section: Chapter 6. SERIES SOLUTIONS OF LINEAR EQUATIONS. Exercises. 6.2 page 239
Problem number: 31.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= \frac {x -6}{x}\\ q(x) &= -\frac {3}{x}\\ \end {align*}

Table 28: Table \(p(x),q(x)\) singularites.
\(p(x)=\frac {x -6}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(q(x)=-\frac {3}{x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0]\)

Irregular singular points : \([\infty ]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} x \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right )+\left (x -6\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )-3 \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-6 \left (n +r \right ) a_{n} x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-3 a_{n} x^{n +r}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r -1\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r -1}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} \left (n +r -1\right ) x^{n +r -1} \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-3 a_{n} x^{n +r}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-3 a_{n -1} x^{n +r -1}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r -1\). \begin{equation} \tag{2B} \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}a_{n -1} \left (n +r -1\right ) x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-6 \left (n +r \right ) a_{n} x^{n +r -1}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-3 a_{n -1} x^{n +r -1}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ x^{n +r -1} a_{n} \left (n +r \right ) \left (n +r -1\right )-6 \left (n +r \right ) a_{n} x^{n +r -1} = 0 \] When \(n = 0\) the above becomes \[ x^{-1+r} a_{0} r \left (-1+r \right )-6 r a_{0} x^{-1+r} = 0 \] Or \[ \left (x^{-1+r} r \left (-1+r \right )-6 r \,x^{-1+r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ r \,x^{-1+r} \left (-7+r \right ) = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ r \left (-7+r \right ) = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= 7\\ r_2 &= 0 \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ r \,x^{-1+r} \left (-7+r \right ) = 0 \] Solving for \(r\) gives the roots of the indicial equation as \([7, 0]\).

Since \(r_1 - r_2 = 7\) is an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= x^{7} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +7}\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} a_{n} \left (n +r \right ) \left (n +r -1\right )+a_{n -1} \left (n +r -1\right )-6 a_{n} \left (n +r \right )-3 a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = -\frac {a_{n -1} \left (n +r -4\right )}{n^{2}+2 n r +r^{2}-7 n -7 r}\tag {4} \] Which for the root \(r = 7\) becomes \[ a_{n} = -\frac {a_{n -1} \left (n +3\right )}{n \left (n +7\right )}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 7\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=\frac {-r +3}{r^{2}-5 r -6} \] Which for the root \(r = 7\) becomes \[ a_{1}=-{\frac {1}{2}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60} \] Which for the root \(r = 7\) becomes \[ a_{2}={\frac {5}{36}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(a_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {5}{36}\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720} \] Which for the root \(r = 7\) becomes \[ a_{3}=-{\frac {1}{36}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(a_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {5}{36}\)
\(a_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{36}}\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {\left (-2+r \right ) r \left (-1+r \right )}{\left (r +4\right ) \left (r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720\right )} \] Which for the root \(r = 7\) becomes \[ a_{4}={\frac {7}{1584}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(a_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {5}{36}\)
\(a_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{36}}\)
\(a_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{\left (r +4\right ) \left (r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720\right )}\) \(\frac {7}{1584}\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r^{5}-10 r^{4}+5 r^{3}+160 r^{2}-156 r -720\right ) \left (r +4\right )} \] Which for the root \(r = 7\) becomes \[ a_{5}=-{\frac {7}{11880}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(a_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {5}{36}\)
\(a_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{36}}\)
\(a_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{\left (r +4\right ) \left (r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720\right )}\) \(\frac {7}{1584}\)
\(a_{5}\) \(-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r^{5}-10 r^{4}+5 r^{3}+160 r^{2}-156 r -720\right ) \left (r +4\right )}\) \(-{\frac {7}{11880}}\)

For \(n = 6\), using the above recursive equation gives \[ a_{6}=\frac {r}{\left (r +6\right ) \left (r +4\right ) \left (r -5\right ) \left (r -6\right ) \left (r +3\right ) \left (r -4\right ) \left (r +5\right )} \] Which for the root \(r = 7\) becomes \[ a_{6}={\frac {7}{102960}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(a_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {5}{36}\)
\(a_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{36}}\)
\(a_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{\left (r +4\right ) \left (r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720\right )}\) \(\frac {7}{1584}\)
\(a_{5}\) \(-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r^{5}-10 r^{4}+5 r^{3}+160 r^{2}-156 r -720\right ) \left (r +4\right )}\) \(-{\frac {7}{11880}}\)
\(a_{6}\) \(\frac {r}{\left (r +6\right ) \left (r +4\right ) \left (r -5\right ) \left (r -6\right ) \left (r +3\right ) \left (r -4\right ) \left (r +5\right )}\) \(\frac {7}{102960}\)

For \(n = 7\), using the above recursive equation gives \[ a_{7}=-\frac {1}{\left (r +7\right ) \left (r^{2}-36\right ) \left (r^{2}-16\right ) \left (r^{2}-25\right )} \] Which for the root \(r = 7\) becomes \[ a_{7}=-{\frac {1}{144144}} \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(a_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {5}{36}\)
\(a_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{36}}\)
\(a_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{\left (r +4\right ) \left (r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720\right )}\) \(\frac {7}{1584}\)
\(a_{5}\) \(-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r^{5}-10 r^{4}+5 r^{3}+160 r^{2}-156 r -720\right ) \left (r +4\right )}\) \(-{\frac {7}{11880}}\)
\(a_{6}\) \(\frac {r}{\left (r +6\right ) \left (r +4\right ) \left (r -5\right ) \left (r -6\right ) \left (r +3\right ) \left (r -4\right ) \left (r +5\right )}\) \(\frac {7}{102960}\)
\(a_{7}\) \(-\frac {1}{\left (r +7\right ) \left (r^{2}-36\right ) \left (r^{2}-16\right ) \left (r^{2}-25\right )}\) \(-{\frac {1}{144144}}\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{7} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}+a_{8} x^{8}\dots \right ) \\ &= x^{7} \left (1-\frac {x}{2}+\frac {5 x^{2}}{36}-\frac {x^{3}}{36}+\frac {7 x^{4}}{1584}-\frac {7 x^{5}}{11880}+\frac {7 x^{6}}{102960}-\frac {x^{7}}{144144}+O\left (x^{8}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Let \[ r_{1}-r_{2} = N \] Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=7\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r\rightarrow r_{2}}a_{7}\left (r \right )\). If this limit exists, then \(C = 0\), else we need to keep the log term and \(C \neq 0\). The above table shows that \begin {align*} a_N &= a_{7} \\ &= -\frac {1}{\left (r +7\right ) \left (r^{2}-36\right ) \left (r^{2}-16\right ) \left (r^{2}-25\right )} \end {align*}

Therefore \begin {align*} \lim _{r\rightarrow r_{2}}-\frac {1}{\left (r +7\right ) \left (r^{2}-36\right ) \left (r^{2}-16\right ) \left (r^{2}-25\right )}&= \lim _{r\rightarrow 0}-\frac {1}{\left (r +7\right ) \left (r^{2}-36\right ) \left (r^{2}-16\right ) \left (r^{2}-25\right )}\\ &= {\frac {1}{100800}} \end {align*}

The limit is \(\frac {1}{100800}\). Since the limit exists then the log term is not needed and we can set \(C = 0\). Therefore the second solution has the form \begin {align*} y_{2}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r}\\ &= \moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n} \end {align*}

Eq (3) derived above is used to find all \(b_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(b_{0}\) is arbitrary and taken as \(b_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{4} b_{n} \left (n +r \right ) \left (n +r -1\right )+b_{n -1} \left (n +r -1\right )-6 \left (n +r \right ) b_{n}-3 b_{n -1} = 0 \end{equation} Which for for the root \(r = 0\) becomes \begin{equation} \tag{4A} b_{n} n \left (n -1\right )+b_{n -1} \left (n -1\right )-6 n b_{n}-3 b_{n -1} = 0 \end{equation} Solving for \(b_{n}\) from the recursive equation (4) gives \[ b_{n} = -\frac {b_{n -1} \left (n +r -4\right )}{n^{2}+2 n r +r^{2}-7 n -7 r}\tag {5} \] Which for the root \(r = 0\) becomes \[ b_{n} = -\frac {b_{n -1} \left (n -4\right )}{n^{2}-7 n}\tag {6} \] At this point, it is a good idea to keep track of \(b_{n}\) in a table both before substituting \(r = 0\) and after as more terms are found using the above recursive equation.

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ b_{1}=-\frac {r -3}{r^{2}-5 r -6} \] Which for the root \(r = 0\) becomes \[ b_{1}=-{\frac {1}{2}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)

For \(n = 2\), using the above recursive equation gives \[ b_{2}=\frac {\left (r -3\right ) \left (-2+r \right )}{\left (r^{2}-5 r -6\right ) \left (r^{2}-3 r -10\right )} \] Which for the root \(r = 0\) becomes \[ b_{2}={\frac {1}{10}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(b_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {1}{10}\)

For \(n = 3\), using the above recursive equation gives \[ b_{3}=-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{\left (r^{2}-5 r -6\right ) \left (r^{2}-3 r -10\right ) \left (r^{2}-r -12\right )} \] Which for the root \(r = 0\) becomes \[ b_{3}=-{\frac {1}{120}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(b_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {1}{10}\)
\(b_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{120}}\)

For \(n = 4\), using the above recursive equation gives \[ b_{4}=\frac {\left (-2+r \right ) r \left (-1+r \right )}{\left (r +4\right ) \left (r^{2}-5 r -6\right ) \left (r^{2}-3 r -10\right ) \left (r^{2}-r -12\right )} \] Which for the root \(r = 0\) becomes \[ b_{4}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(b_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {1}{10}\)
\(b_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{120}}\)
\(b_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{r^{7}-5 r^{6}-41 r^{5}+145 r^{4}+664 r^{3}-860 r^{2}-4224 r -2880}\) \(0\)

For \(n = 5\), using the above recursive equation gives \[ b_{5}=-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r^{2}-r -12\right ) \left (r^{2}-3 r -10\right ) \left (r -6\right ) \left (r +4\right )} \] Which for the root \(r = 0\) becomes \[ b_{5}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(b_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {1}{10}\)
\(b_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{120}}\)
\(b_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{r^{7}-5 r^{6}-41 r^{5}+145 r^{4}+664 r^{3}-860 r^{2}-4224 r -2880}\) \(0\)
\(b_{5}\) \(-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r -5\right ) \left (r -6\right ) \left (r +3\right ) \left (2+r \right ) \left (r -4\right ) \left (r +4\right )}\) \(0\)

For \(n = 6\), using the above recursive equation gives \[ b_{6}=\frac {r}{\left (r +6\right ) \left (r +4\right ) \left (r -6\right ) \left (r -5\right ) \left (r^{2}-r -12\right ) \left (r +5\right )} \] Which for the root \(r = 0\) becomes \[ b_{6}=0 \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(b_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {1}{10}\)
\(b_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{120}}\)
\(b_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{r^{7}-5 r^{6}-41 r^{5}+145 r^{4}+664 r^{3}-860 r^{2}-4224 r -2880}\) \(0\)
\(b_{5}\) \(-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r -5\right ) \left (r -6\right ) \left (r +3\right ) \left (2+r \right ) \left (r -4\right ) \left (r +4\right )}\) \(0\)
\(b_{6}\) \(\frac {r}{\left (r +4\right ) \left (r^{2}-r -12\right ) \left (r^{2}-36\right ) \left (r^{2}-25\right )}\) \(0\)

For \(n = 7\), using the above recursive equation gives \[ b_{7}=-\frac {1}{\left (r +6\right ) \left (r +4\right ) \left (r -5\right ) \left (r -6\right ) \left (r -4\right ) \left (r +5\right ) \left (r +7\right )} \] Which for the root \(r = 0\) becomes \[ b_{7}={\frac {1}{100800}} \] And the table now becomes

\(n\) \(b_{n ,r}\) \(b_{n}\)
\(b_{0}\) \(1\) \(1\)
\(b_{1}\) \(\frac {-r +3}{r^{2}-5 r -6}\) \(-{\frac {1}{2}}\)
\(b_{2}\) \(\frac {\left (-2+r \right ) \left (r -3\right )}{r^{4}-8 r^{3}-r^{2}+68 r +60}\) \(\frac {1}{10}\)
\(b_{3}\) \(-\frac {\left (-2+r \right ) \left (r -3\right ) \left (-1+r \right )}{r^{6}-9 r^{5}-5 r^{4}+165 r^{3}+4 r^{2}-876 r -720}\) \(-{\frac {1}{120}}\)
\(b_{4}\) \(\frac {\left (-2+r \right ) r \left (-1+r \right )}{r^{7}-5 r^{6}-41 r^{5}+145 r^{4}+664 r^{3}-860 r^{2}-4224 r -2880}\) \(0\)
\(b_{5}\) \(-\frac {r \left (-1+r \right )}{\left (r +5\right ) \left (r -5\right ) \left (r -6\right ) \left (r +3\right ) \left (2+r \right ) \left (r -4\right ) \left (r +4\right )}\) \(0\)
\(b_{6}\) \(\frac {r}{\left (r +4\right ) \left (r^{2}-r -12\right ) \left (r^{2}-36\right ) \left (r^{2}-25\right )}\) \(0\)
\(b_{7}\) \(-\frac {1}{\left (r +7\right ) \left (r^{2}-36\right ) \left (r^{2}-16\right ) \left (r^{2}-25\right )}\) \(\frac {1}{100800}\)

Using the above table, then the solution \(y_{2}\left (x \right )\) is \begin {align*} y_{2}\left (x \right )&= b_{0}+b_{1} x +b_{2} x^{2}+b_{3} x^{3}+b_{4} x^{4}+b_{5} x^{5}+b_{6} x^{6}+b_{7} x^{7}+b_{8} x^{8}\dots \\ &= 1-\frac {x}{2}+\frac {x^{2}}{10}-\frac {x^{3}}{120}+\frac {x^{7}}{100800}+O\left (x^{8}\right ) \end {align*}

Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{7} \left (1-\frac {x}{2}+\frac {5 x^{2}}{36}-\frac {x^{3}}{36}+\frac {7 x^{4}}{1584}-\frac {7 x^{5}}{11880}+\frac {7 x^{6}}{102960}-\frac {x^{7}}{144144}+O\left (x^{8}\right )\right ) + c_{2} \left (1-\frac {x}{2}+\frac {x^{2}}{10}-\frac {x^{3}}{120}+\frac {x^{7}}{100800}+O\left (x^{8}\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{7} \left (1-\frac {x}{2}+\frac {5 x^{2}}{36}-\frac {x^{3}}{36}+\frac {7 x^{4}}{1584}-\frac {7 x^{5}}{11880}+\frac {7 x^{6}}{102960}-\frac {x^{7}}{144144}+O\left (x^{8}\right )\right )+c_{2} \left (1-\frac {x}{2}+\frac {x^{2}}{10}-\frac {x^{3}}{120}+\frac {x^{7}}{100800}+O\left (x^{8}\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{7} \left (1-\frac {x}{2}+\frac {5 x^{2}}{36}-\frac {x^{3}}{36}+\frac {7 x^{4}}{1584}-\frac {7 x^{5}}{11880}+\frac {7 x^{6}}{102960}-\frac {x^{7}}{144144}+O\left (x^{8}\right )\right )+c_{2} \left (1-\frac {x}{2}+\frac {x^{2}}{10}-\frac {x^{3}}{120}+\frac {x^{7}}{100800}+O\left (x^{8}\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{7} \left (1-\frac {x}{2}+\frac {5 x^{2}}{36}-\frac {x^{3}}{36}+\frac {7 x^{4}}{1584}-\frac {7 x^{5}}{11880}+\frac {7 x^{6}}{102960}-\frac {x^{7}}{144144}+O\left (x^{8}\right )\right )+c_{2} \left (1-\frac {x}{2}+\frac {x^{2}}{10}-\frac {x^{3}}{120}+\frac {x^{7}}{100800}+O\left (x^{8}\right )\right ) \] Verified OK.

2.31.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 2 \\ {} & {} & y^{\prime \prime } \\ \bullet & {} & \textrm {Isolate 2nd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {3 y}{x}-\frac {\left (x -6\right ) y^{\prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime }+\frac {\left (x -6\right ) y^{\prime }}{x}-\frac {3 y}{x}=0 \\ \square & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & \circ & \textrm {Define functions}\hspace {3pt} \\ {} & {} & \left [P_{2}\left (x \right )=\frac {x -6}{x}, P_{3}\left (x \right )=-\frac {3}{x}\right ] \\ {} & \circ & x \cdot P_{2}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x \cdot P_{2}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=-6 \\ {} & \circ & x^{2}\cdot P_{3}\left (x \right )\textrm {is analytic at}\hspace {3pt} x =0 \\ {} & {} & \left (x^{2}\cdot P_{3}\left (x \right )\right )\bigg | {\mstack {}{_{x \hiderel {=}0}}}=0 \\ {} & \circ & x =0\textrm {is a regular singular point}\hspace {3pt} \\ & {} & \textrm {Check to see if}\hspace {3pt} x_{0}=0\hspace {3pt}\textrm {is a regular singular point}\hspace {3pt} \\ {} & {} & x_{0}=0 \\ \bullet & {} & \textrm {Multiply by denominators}\hspace {3pt} \\ {} & {} & x y^{\prime \prime }+\left (x -6\right ) y^{\prime }-3 y=0 \\ \bullet & {} & \textrm {Assume series solution for}\hspace {3pt} y \\ {} & {} & y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +r} \\ \square & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x^{m}\cdot y^{\prime }\hspace {3pt}\textrm {to series expansion for}\hspace {3pt} m =0..1 \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) x^{k +r -1+m} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1-m \\ {} & {} & x^{m}\cdot y^{\prime }=\moverset {\infty }{\munderset {k =-1+m}{\sum }}a_{k +1-m} \left (k +1-m +r \right ) x^{k +r} \\ {} & \circ & \textrm {Convert}\hspace {3pt} x \cdot y^{\prime \prime }\hspace {3pt}\textrm {to series expansion}\hspace {3pt} \\ {} & {} & x \cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} \left (k +r \right ) \left (k +r -1\right ) x^{k +r -1} \\ {} & \circ & \textrm {Shift index using}\hspace {3pt} k \mathrm {->}k +1 \\ {} & {} & x \cdot y^{\prime \prime }=\moverset {\infty }{\munderset {k =-1}{\sum }}a_{k +1} \left (k +1+r \right ) \left (k +r \right ) x^{k +r} \\ & {} & \textrm {Rewrite ODE with series expansions}\hspace {3pt} \\ {} & {} & a_{0} r \left (-7+r \right ) x^{-1+r}+\left (\moverset {\infty }{\munderset {k =0}{\sum }}\left (a_{k +1} \left (k +1+r \right ) \left (k -6+r \right )+a_{k} \left (k +r -3\right )\right ) x^{k +r}\right )=0 \\ \bullet & {} & a_{0}\textrm {cannot be 0 by assumption, giving the indicial equation}\hspace {3pt} \\ {} & {} & r \left (-7+r \right )=0 \\ \bullet & {} & \textrm {Values of r that satisfy the indicial equation}\hspace {3pt} \\ {} & {} & r \in \left \{0, 7\right \} \\ \bullet & {} & \textrm {Each term in the series must be 0, giving the recursion relation}\hspace {3pt} \\ {} & {} & a_{k +1} \left (k +1+r \right ) \left (k -6+r \right )+a_{k} \left (k +r -3\right )=0 \\ \bullet & {} & \textrm {Recursion relation that defines series solution to ODE}\hspace {3pt} \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (k +r -3\right )}{\left (k +1+r \right ) \left (k -6+r \right )} \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =0\hspace {3pt}\textrm {; series terminates at}\hspace {3pt} k =3 \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (k -3\right )}{\left (k +1\right ) \left (k -6\right )} \\ \bullet & {} & \textrm {Apply recursion relation for}\hspace {3pt} k =0 \\ {} & {} & a_{1}=-\frac {a_{0}}{2} \\ \bullet & {} & \textrm {Apply recursion relation for}\hspace {3pt} k =1 \\ {} & {} & a_{2}=-\frac {a_{1}}{5} \\ \bullet & {} & \textrm {Express in terms of}\hspace {3pt} a_{0} \\ {} & {} & a_{2}=\frac {a_{0}}{10} \\ \bullet & {} & \textrm {Apply recursion relation for}\hspace {3pt} k =2 \\ {} & {} & a_{3}=-\frac {a_{2}}{12} \\ \bullet & {} & \textrm {Express in terms of}\hspace {3pt} a_{0} \\ {} & {} & a_{3}=-\frac {a_{0}}{120} \\ \bullet & {} & \textrm {Terminating series solution of the ODE for}\hspace {3pt} r =0\hspace {3pt}\textrm {. Use reduction of order to find the second linearly independent solution}\hspace {3pt} \\ {} & {} & y=a_{0}\cdot \left (1-\frac {1}{2} x +\frac {1}{10} x^{2}-\frac {1}{120} x^{3}\right ) \\ \bullet & {} & \textrm {Recursion relation for}\hspace {3pt} r =7 \\ {} & {} & a_{k +1}=-\frac {a_{k} \left (k +4\right )}{\left (k +8\right ) \left (k +1\right )} \\ \bullet & {} & \textrm {Solution for}\hspace {3pt} r =7 \\ {} & {} & \left [y=\moverset {\infty }{\munderset {k =0}{\sum }}a_{k} x^{k +7}, a_{k +1}=-\frac {a_{k} \left (k +4\right )}{\left (k +8\right ) \left (k +1\right )}\right ] \\ \bullet & {} & \textrm {Combine solutions and rename parameters}\hspace {3pt} \\ {} & {} & \left [y=a_{0}\cdot \left (1-\frac {1}{2} x +\frac {1}{10} x^{2}-\frac {1}{120} x^{3}\right )+\left (\moverset {\infty }{\munderset {k =0}{\sum }}b_{k} x^{k +7}\right ), b_{k +1}=-\frac {b_{k} \left (k +4\right )}{\left (k +8\right ) \left (k +1\right )}\right ] \end {array} \]

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Reducible group (found another exponential solution) 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 40

Order:=6; 
dsolve(x*diff(y(x),x$2)+(x-6)*diff(y(x),x)-3*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = c_{1} x^{7} \left (1-\frac {1}{2} x +\frac {5}{36} x^{2}-\frac {1}{36} x^{3}+\frac {7}{1584} x^{4}-\frac {7}{11880} x^{5}+\operatorname {O}\left (x^{6}\right )\right )+c_{2} \left (3628800-1814400 x +362880 x^{2}-30240 x^{3}+\operatorname {O}\left (x^{6}\right )\right ) \]

Solution by Mathematica

Time used: 0.03 (sec). Leaf size: 63

AsymptoticDSolveValue[x*y''[x]+(x-6)*y'[x]-3*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_1 \left (-\frac {x^3}{120}+\frac {x^2}{10}-\frac {x}{2}+1\right )+c_2 \left (\frac {7 x^{11}}{1584}-\frac {x^{10}}{36}+\frac {5 x^9}{36}-\frac {x^8}{2}+x^7\right ) \]