14.11 problem 337

14.11.1 Solving as separable ode
14.11.2 Maple step by step solution

Internal problem ID [15194]
Internal file name [OUTPUT/15195_Tuesday_April_23_2024_04_53_53_PM_67792014/index.tex]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section: Chapter 2 (Higher order ODE’s). Section 14. Differential equations admitting of depression of their order. Exercises page 107
Problem number: 337.
ODE order: 1.
ODE degree: 0.

The type(s) of ODE detected by this program : "separable"

Maple gives the following as the ode type

[_separable]

\[ \boxed {y x -y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )=0} \]

14.11.1 Solving as separable ode

In canonical form the ODE is \begin {align*} y' &= F(x,y)\\ &= f( x) g(y)\\ &= \frac {y x}{\operatorname {LambertW}\left (y \right )} \end {align*}

Where \(f(x)=x\) and \(g(y)=\frac {y}{\operatorname {LambertW}\left (y \right )}\). Integrating both sides gives \begin{align*} \frac {1}{\frac {y}{\operatorname {LambertW}\left (y \right )}} \,dy &= x \,d x \\ \int { \frac {1}{\frac {y}{\operatorname {LambertW}\left (y \right )}} \,dy} &= \int {x \,d x} \\ \frac {\operatorname {LambertW}\left (y \right )^{2}}{2}+\operatorname {LambertW}\left (y \right )&=\frac {x^{2}}{2}+c_{1} \\ \end{align*} Which results in \begin{align*} y &= \left (-1+\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1+\sqrt {x^{2}+2 c_{1} +1}} \\ y &= \left (-1-\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1-\sqrt {x^{2}+2 c_{1} +1}} \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \left (-1+\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1+\sqrt {x^{2}+2 c_{1} +1}} \\ \tag{2} y &= \left (-1-\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1-\sqrt {x^{2}+2 c_{1} +1}} \\ \end{align*}

Figure 402: Slope field plot

Verification of solutions

\[ y = \left (-1+\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1+\sqrt {x^{2}+2 c_{1} +1}} \] Verified OK.

\[ y = \left (-1-\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1-\sqrt {x^{2}+2 c_{1} +1}} \] Verified OK.

14.11.2 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y x -y^{\prime } \ln \left (\frac {y^{\prime }}{x}\right )=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & y^{\prime } \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {y x}{\mathit {LambertW}\left (y\right )} \\ \bullet & {} & \textrm {Separate variables}\hspace {3pt} \\ {} & {} & \frac {y^{\prime } \mathit {LambertW}\left (y\right )}{y}=x \\ \bullet & {} & \textrm {Integrate both sides with respect to}\hspace {3pt} x \\ {} & {} & \int \frac {y^{\prime } \mathit {LambertW}\left (y\right )}{y}d x =\int x d x +c_{1} \\ \bullet & {} & \textrm {Evaluate integral}\hspace {3pt} \\ {} & {} & \frac {\mathit {LambertW}\left (y\right )^{2}}{2}+\mathit {LambertW}\left (y\right )=\frac {x^{2}}{2}+c_{1} \\ \bullet & {} & \textrm {Solve for}\hspace {3pt} y \\ {} & {} & \left \{y=\left (-1-\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1-\sqrt {x^{2}+2 c_{1} +1}}, y=\left (-1+\sqrt {x^{2}+2 c_{1} +1}\right ) {\mathrm e}^{-1+\sqrt {x^{2}+2 c_{1} +1}}\right \} \end {array} \]

Maple trace

`Methods for first order ODEs: 
-> Solving 1st order ODE of high degree, 1st attempt 
trying 1st order WeierstrassP solution for high degree ODE 
trying 1st order WeierstrassPPrime solution for high degree ODE 
trying 1st order JacobiSN solution for high degree ODE 
trying 1st order ODE linearizable_by_differentiation 
trying differential order: 1; missing variables 
trying dAlembert 
trying simple symmetries for implicit equations 
<- symmetries for implicit equations successful`
 

Solution by Maple

Time used: 0.032 (sec). Leaf size: 63

dsolve(x*y(x)=diff(y(x),x)*ln(diff(y(x),x)/x),y(x), singsol=all)
 

\begin{align*} y &= \left (-1-\sqrt {x^{2}-2 c_{1} +1}\right ) {\mathrm e}^{-1-\sqrt {x^{2}-2 c_{1} +1}} \\ y &= \left (-1+\sqrt {x^{2}-2 c_{1} +1}\right ) {\mathrm e}^{-1+\sqrt {x^{2}-2 c_{1} +1}} \\ \end{align*}

Solution by Mathematica

Time used: 4.223 (sec). Leaf size: 83

DSolve[x*y[x]==y'[x]*Log[y'[x]/x],y[x],x,IncludeSingularSolutions -> True]
 

\begin{align*} y(x)\to -e^{-1-\sqrt {x^2+1+2 c_1}} \left (1+\sqrt {x^2+1+2 c_1}\right ) \\ y(x)\to e^{-1+\sqrt {x^2+1+2 c_1}} \left (-1+\sqrt {x^2+1+2 c_1}\right ) \\ y(x)\to 0 \\ \end{align*}