14.14 problem 340

14.14.1 Maple step by step solution

Internal problem ID [15197]
Internal file name [OUTPUT/15198_Tuesday_April_23_2024_04_53_56_PM_24783477/index.tex]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section: Chapter 2 (Higher order ODE’s). Section 14. Differential equations admitting of depression of their order. Exercises page 107
Problem number: 340.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_missing_y"

Maple gives the following as the ode type

[[_3rd_order, _missing_y]]

\[ \boxed {x y^{\prime \prime \prime }-y^{\prime \prime }=0} \] Since \(y\) is missing from the ode then we can use the substitution \(y^{\prime } = v \left (x \right )\) to reduce the order by one. The ODE becomes \begin {align*} x v^{\prime \prime }\left (x \right )-v^{\prime }\left (x \right ) = 0 \end {align*}

Integrating both sides of the ODE w.r.t \(x\) gives \begin {align*} \int \left (x v^{\prime \prime }\left (x \right )-v^{\prime }\left (x \right )\right )d x &= 0 \\ v^{\prime }\left (x \right ) x -2 v \left (x \right ) = c_{1} \end {align*}

Which is now solved for \(v \left (x \right )\). In canonical form the ODE is \begin {align*} v' &= F(x,v)\\ &= f( x) g(v)\\ &= \frac {2 v +c_{1}}{x} \end {align*}

Where \(f(x)=\frac {1}{x}\) and \(g(v)=2 v +c_{1}\). Integrating both sides gives \begin{align*} \frac {1}{2 v +c_{1}} \,dv &= \frac {1}{x} \,d x \\ \int { \frac {1}{2 v +c_{1}} \,dv} &= \int {\frac {1}{x} \,d x} \\ \frac {\ln \left (v +\frac {c_{1}}{2}\right )}{2}&=\ln \left (x \right )+c_{2} \\ \end{align*} Raising both side to exponential gives \begin {align*} \frac {\sqrt {4 v +2 c_{1}}}{2} &= {\mathrm e}^{\ln \left (x \right )+c_{2}} \end {align*}

Which simplifies to \begin {align*} \frac {\sqrt {4 v +2 c_{1}}}{2} &= c_{3} x \end {align*}

But since \(y^{\prime } = v \left (x \right )\) then we now need to solve the ode \(y^{\prime } = c_{3}^{2} {\mathrm e}^{2 c_{2}} x^{2}-\frac {c_{1}}{2}\). Integrating both sides gives \begin {align*} y &= \int { c_{3}^{2} {\mathrm e}^{2 c_{2}} x^{2}-\frac {c_{1}}{2}\,\mathop {\mathrm {d}x}}\\ &= \frac {c_{3}^{2} {\mathrm e}^{2 c_{2}} x^{3}}{3}-\frac {c_{1} x}{2}+c_{4} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {c_{3}^{2} {\mathrm e}^{2 c_{2}} x^{3}}{3}-\frac {c_{1} x}{2}+c_{4} \\ \end{align*}

Verification of solutions

\[ y = \frac {c_{3}^{2} {\mathrm e}^{2 c_{2}} x^{3}}{3}-\frac {c_{1} x}{2}+c_{4} \] Verified OK.

14.14.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x y^{\prime \prime \prime }-y^{\prime \prime }=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \bullet & {} & \textrm {Isolate 3rd derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\frac {y^{\prime \prime }}{x} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }-\frac {y^{\prime \prime }}{x}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & x y^{\prime \prime \prime }-y^{\prime \prime }=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime }=\left (\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{2}+t^{\prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {3rd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{3}+3 t^{\prime }\left (x \right ) t^{\prime \prime }\left (x \right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+t^{\prime \prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & x \left (\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}}\right )-\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}+\frac {\frac {d}{d t}y \left (t \right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {\frac {d^{3}}{d t^{3}}y \left (t \right )-4 \frac {d^{2}}{d t^{2}}y \left (t \right )+3 \frac {d}{d t}y \left (t \right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Isolate 3rd derivative}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d t^{3}}y \left (t \right )=4 \frac {d^{2}}{d t^{2}}y \left (t \right )-3 \frac {d}{d t}y \left (t \right ) \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (t \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{3}}{d t^{3}}y \left (t \right )-4 \frac {d^{2}}{d t^{2}}y \left (t \right )+3 \frac {d}{d t}y \left (t \right )=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d t}y_{3}\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y_{3}\left (t \right )=4 y_{3}\left (t \right )-3 y_{2}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=\frac {d}{d t}y_{1}\left (t \right ), y_{3}\left (t \right )=\frac {d}{d t}y_{2}\left (t \right ), \frac {d}{d t}y_{3}\left (t \right )=4 y_{3}\left (t \right )-3 y_{2}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & 4 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -3 & 4 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ], \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ], \left [3, \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}={\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [3, \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}={\mathrm e}^{3 t}\cdot \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{2} {\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]+c_{3} {\mathrm e}^{3 t}\cdot \left [\begin {array}{c} \frac {1}{9} \\ \frac {1}{3} \\ 1 \end {array}\right ]+\left [\begin {array}{c} c_{1} \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=c_{2} {\mathrm e}^{t}+\frac {c_{3} {\mathrm e}^{3 t}}{9}+c_{1} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y=x c_{2} +\frac {1}{9} c_{3} x^{3}+c_{1} \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 14

dsolve(x*diff(y(x),x$3)-diff(y(x),x$2)=0,y(x), singsol=all)
 

\[ y = c_{3} x^{3}+c_{2} x +c_{1} \]

Solution by Mathematica

Time used: 0.024 (sec). Leaf size: 21

DSolve[x*y'''[x]-y''[x]==0,y[x],x,IncludeSingularSolutions -> True]
                                                                                    
                                                                                    
 

\[ y(x)\to \frac {c_1 x^3}{6}+c_3 x+c_2 \]