17.36 problem 586

17.36.1 Maple step by step solution

Internal problem ID [15354]
Internal file name [OUTPUT/15355_Wednesday_May_08_2024_03_56_50_PM_93568330/index.tex]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section: Chapter 2 (Higher order ODE’s). Section 15.3 Nonhomogeneous linear equations with constant coefficients. Superposition principle. Exercises page 137
Problem number: 586.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_y]]

\[ \boxed {y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }=4 x +3 \sin \left (x \right )+\cos \left (x \right )} \] This is higher order nonhomogeneous ODE. Let the solution be \[ y = y_h + y_p \] Where \(y_h\) is the solution to the homogeneous ODE And \(y_p\) is a particular solution to the nonhomogeneous ODE. \(y_h\) is the solution to \[ y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 0 \] The characteristic equation is \[ \lambda ^{3}-\lambda ^{2}-2 \lambda = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= 0\\ \lambda _2 &= 2\\ \lambda _3 &= -1 \end {align*}

Therefore the homogeneous solution is \[ y_h(x)=c_{1} {\mathrm e}^{-x}+c_{2} +{\mathrm e}^{2 x} c_{3} \] The fundamental set of solutions for the homogeneous solution are the following \begin{align*} y_1 &= {\mathrm e}^{-x} \\ y_2 &= 1 \\ y_3 &= {\mathrm e}^{2 x} \\ \end{align*} Now the particular solution to the given ODE is found \[ y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime } = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \] The particular solution is found using the method of undetermined coefficients. Looking at the RHS of the ode, which is \[ 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \] Shows that the corresponding undetermined set of the basis functions (UC_set) for the trial solution is \[ [\{1, x\}, \{\cos \left (x \right ), \sin \left (x \right )\}] \] While the set of the basis functions for the homogeneous solution found earlier is \[ \{1, {\mathrm e}^{-x}, {\mathrm e}^{2 x}\} \] Since \(1\) is duplicated in the UC_set, then this basis is multiplied by extra \(x\). The UC_set becomes \[ [\{x, x^{2}\}, \{\cos \left (x \right ), \sin \left (x \right )\}] \] Since there was duplication between the basis functions in the UC_set and the basis functions of the homogeneous solution, the trial solution is a linear combination of all the basis function in the above updated UC_set. \[ y_p = A_{2} x^{2}+A_{1} x +A_{3} \cos \left (x \right )+A_{4} \sin \left (x \right ) \] The unknowns \(\{A_{1}, A_{2}, A_{3}, A_{4}\}\) are found by substituting the above trial solution \(y_p\) into the ODE and comparing coefficients. Substituting the trial solution into the ODE and simplifying gives \[ 3 A_{3} \sin \left (x \right )-3 A_{4} \cos \left (x \right )-2 A_{2}+A_{3} \cos \left (x \right )+A_{4} \sin \left (x \right )-4 A_{2} x -2 A_{1} = 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \] Solving for the unknowns by comparing coefficients results in \[ [A_{1} = 1, A_{2} = -1, A_{3} = 1, A_{4} = 0] \] Substituting the above back in the above trial solution \(y_p\), gives the particular solution \[ y_p = -x^{2}+x +\cos \left (x \right ) \] Therefore the general solution is \begin{align*} y &= y_h + y_p \\ &= \left (c_{1} {\mathrm e}^{-x}+c_{2} +{\mathrm e}^{2 x} c_{3}\right ) + \left (-x^{2}+x +\cos \left (x \right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} {\mathrm e}^{-x}+c_{2} +{\mathrm e}^{2 x} c_{3} -x^{2}+x +\cos \left (x \right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} {\mathrm e}^{-x}+c_{2} +{\mathrm e}^{2 x} c_{3} -x^{2}+x +\cos \left (x \right ) \] Verified OK.

17.36.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }-y^{\prime \prime }-2 y^{\prime }=4 x +3 \sin \left (x \right )+\cos \left (x \right ) \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & y^{\prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=y^{\prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{3}^{\prime }\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{3}^{\prime }\left (x \right )=4 x +3 \sin \left (x \right )+\cos \left (x \right )+y_{3}\left (x \right )+2 y_{2}\left (x \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=y_{1}^{\prime }\left (x \right ), y_{3}\left (x \right )=y_{2}^{\prime }\left (x \right ), y_{3}^{\prime }\left (x \right )=4 x +3 \sin \left (x \right )+\cos \left (x \right )+y_{3}\left (x \right )+2 y_{2}\left (x \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right )+\left [\begin {array}{c} 0 \\ 0 \\ 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Define the forcing function}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{f}}\left (x \right )=\left [\begin {array}{c} 0 \\ 0 \\ 4 x +3 \sin \left (x \right )+\cos \left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 1 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right )+{\moverset {\rightarrow }{f}} \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ], \left [2, \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{-x}\cdot \left [\begin {array}{c} 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [2, \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}={\mathrm e}^{2 x}\cdot \left [\begin {array}{c} \frac {1}{4} \\ \frac {1}{2} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution of the system of ODEs can be written in terms of the particular solution}\hspace {3pt} {\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3}+{\moverset {\rightarrow }{y}}_{p}\left (x \right ) \\ \square & {} & \textrm {Fundamental matrix}\hspace {3pt} \\ {} & \circ & \textrm {Let}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {be the matrix whose columns are the independent solutions of the homogeneous system.}\hspace {3pt} \\ {} & {} & \phi \left (x \right )=\left [\begin {array}{ccc} {\mathrm e}^{-x} & 1 & \frac {{\mathrm e}^{2 x}}{4} \\ -{\mathrm e}^{-x} & 0 & \frac {{\mathrm e}^{2 x}}{2} \\ {\mathrm e}^{-x} & 0 & {\mathrm e}^{2 x} \end {array}\right ] \\ {} & \circ & \textrm {The fundamental matrix,}\hspace {3pt} \Phi \left (x \right )\hspace {3pt}\textrm {is a normalized version of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {satisfying}\hspace {3pt} \Phi \left (0\right )=I \hspace {3pt}\textrm {where}\hspace {3pt} I \hspace {3pt}\textrm {is the identity matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\phi \left (x \right )\cdot \frac {1}{\phi \left (0\right )} \\ {} & \circ & \textrm {Substitute the value of}\hspace {3pt} \phi \left (x \right )\hspace {3pt}\textrm {and}\hspace {3pt} \phi \left (0\right ) \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{ccc} {\mathrm e}^{-x} & 1 & \frac {{\mathrm e}^{2 x}}{4} \\ -{\mathrm e}^{-x} & 0 & \frac {{\mathrm e}^{2 x}}{2} \\ {\mathrm e}^{-x} & 0 & {\mathrm e}^{2 x} \end {array}\right ]\cdot \frac {1}{\left [\begin {array}{ccc} 1 & 1 & \frac {1}{4} \\ -1 & 0 & \frac {1}{2} \\ 1 & 0 & 1 \end {array}\right ]} \\ {} & \circ & \textrm {Evaluate and simplify to get the fundamental matrix}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )=\left [\begin {array}{ccc} 1 & -\frac {2 \,{\mathrm e}^{-x}}{3}+\frac {1}{2}+\frac {{\mathrm e}^{2 x}}{6} & \frac {{\mathrm e}^{-x}}{3}-\frac {1}{2}+\frac {{\mathrm e}^{2 x}}{6} \\ 0 & \frac {2 \,{\mathrm e}^{-x}}{3}+\frac {{\mathrm e}^{2 x}}{3} & -\frac {{\mathrm e}^{-x}}{3}+\frac {{\mathrm e}^{2 x}}{3} \\ 0 & -\frac {2 \,{\mathrm e}^{-x}}{3}+\frac {2 \,{\mathrm e}^{2 x}}{3} & \frac {{\mathrm e}^{-x}}{3}+\frac {2 \,{\mathrm e}^{2 x}}{3} \end {array}\right ] \\ \square & {} & \textrm {Find a particular solution of the system of ODEs using variation of parameters}\hspace {3pt} \\ {} & \circ & \textrm {Let the particular solution be the fundamental matrix multiplied by}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {and solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & \circ & \textrm {Take the derivative of the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}^{\prime }\left (x \right )=\Phi ^{\prime }\left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Substitute particular solution and its derivative into the system of ODEs}\hspace {3pt} \\ {} & {} & \Phi ^{\prime }\left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {The fundamental matrix has columns that are solutions to the homogeneous system so its derivative follows that of the homogeneous system}\hspace {3pt} \\ {} & {} & A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+\Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=A \cdot \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}\left (x \right )+{\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Cancel like terms}\hspace {3pt} \\ {} & {} & \Phi \left (x \right )\cdot {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )={\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Multiply by the inverse of the fundamental matrix}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{v}}^{\prime }\left (x \right )=\frac {1}{\Phi \left (x \right )}\cdot {\moverset {\rightarrow }{f}}\left (x \right ) \\ {} & \circ & \textrm {Integrate to solve for}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right ) \\ {} & {} & {\moverset {\rightarrow }{v}}\left (x \right )=\int _{0}^{x}\frac {1}{\Phi \left (s \right )}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \\ {} & \circ & \textrm {Plug}\hspace {3pt} {\moverset {\rightarrow }{v}}\left (x \right )\hspace {3pt}\textrm {into the equation for the particular solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\Phi \left (x \right )\cdot \left (\int _{0}^{x}\frac {1}{\Phi \left (s \right )}\cdot {\moverset {\rightarrow }{f}}\left (s \right )d s \right ) \\ {} & \circ & \textrm {Plug in the fundamental matrix and the forcing function and compute}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{p}\left (x \right )=\left [\begin {array}{c} -x^{2}+x +\cos \left (x \right )+\frac {{\mathrm e}^{2 x}}{3}-3+\frac {5 \,{\mathrm e}^{-x}}{3} \\ \frac {2 \,{\mathrm e}^{2 x}}{3}-2 x -\sin \left (x \right )+1-\frac {5 \,{\mathrm e}^{-x}}{3} \\ \frac {4 \,{\mathrm e}^{2 x}}{3}-\cos \left (x \right )-2+\frac {5 \,{\mathrm e}^{-x}}{3} \end {array}\right ] \\ \bullet & {} & \textrm {Plug particular solution back into general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3}+\left [\begin {array}{c} -x^{2}+x +\cos \left (x \right )+\frac {{\mathrm e}^{2 x}}{3}-3+\frac {5 \,{\mathrm e}^{-x}}{3} \\ \frac {2 \,{\mathrm e}^{2 x}}{3}-2 x -\sin \left (x \right )+1-\frac {5 \,{\mathrm e}^{-x}}{3} \\ \frac {4 \,{\mathrm e}^{2 x}}{3}-\cos \left (x \right )-2+\frac {5 \,{\mathrm e}^{-x}}{3} \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y=\frac {\left (12 c_{1} +20\right ) {\mathrm e}^{-x}}{12}+\frac {\left (3 c_{3} +4\right ) {\mathrm e}^{2 x}}{12}-x^{2}+x +c_{2} +\cos \left (x \right )-3 \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
trying high order exact linear fully integrable 
trying differential order: 3; linear nonhomogeneous with symmetry [0,1] 
-> Calling odsolve with the ODE`, diff(diff(_b(_a), _a), _a) = diff(_b(_a), _a)+2*_b(_a)+4*_a+3*sin(_a)+cos(_a), _b(_a)`   *** Suble 
   Methods for second order ODEs: 
   --- Trying classification methods --- 
   trying a quadrature 
   trying high order exact linear fully integrable 
   trying differential order: 2; linear nonhomogeneous with symmetry [0,1] 
   trying a double symmetry of the form [xi=0, eta=F(x)] 
   -> Try solving first the homogeneous part of the ODE 
      checking if the LODE has constant coefficients 
      <- constant coefficients successful 
   <- solving first the homogeneous part of the ODE successful 
<- differential order: 3; linear nonhomogeneous with symmetry [0,1] successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 28

dsolve(diff(y(x),x$3)-diff(y(x),x$2)-2*diff(y(x),x)=4*x+3*sin(x)+cos(x),y(x), singsol=all)
 

\[ y \left (x \right ) = \frac {c_{1} {\mathrm e}^{2 x}}{2}-c_{2} {\mathrm e}^{-x}-x^{2}+\cos \left (x \right )+x +c_{3} \]

Solution by Mathematica

Time used: 0.338 (sec). Leaf size: 46

DSolve[y'''[x]-y''[x]-2*y'[x]==4*x+2*Sin[x]+Cos[x],y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to -x^2+x-\frac {\sin (x)}{10}+\frac {7 \cos (x)}{10}-c_1 e^{-x}+\frac {1}{2} c_2 e^{2 x}+c_3 \]