22.18 problem 723

22.18.1 Maple step by step solution

Internal problem ID [15466]
Internal file name [OUTPUT/15467_Wednesday_May_08_2024_04_00_56_PM_9770541/index.tex]

Book: A book of problems in ordinary differential equations. M.L. KRASNOV, A.L. KISELYOV, G.I. MARKARENKO. MIR, MOSCOW. 1983
Section: Chapter 2 (Higher order ODE’s). Section 17. Boundary value problems. Exercises page 163
Problem number: 723.
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_missing_y"

Maple gives the following as the ode type

[[_high_order, _missing_y]]

\[ \boxed {x^{3} y^{\prime \prime \prime \prime }+6 x^{2} y^{\prime \prime \prime }+6 x y^{\prime \prime }=0} \] With initial conditions \begin {align*} [y \left (1\right ) = 0, y^{\prime }\left (1\right ) = 0] \end {align*}

Since \(y\) is missing from the ode then we can use the substitution \(y^{\prime } = v \left (x \right )\) to reduce the order by one. The ODE becomes \begin {align*} x^{2} v^{\prime \prime \prime }\left (x \right )+6 x v^{\prime \prime }\left (x \right )+6 v^{\prime }\left (x \right ) = 0 \end {align*}

Since \(v \left (x \right )\) is missing from the ode then we can use the substitution \(v^{\prime }\left (x \right ) = w \left (x \right )\) to reduce the order by one. The ODE becomes \begin {align*} x^{2} w^{\prime \prime }\left (x \right )+6 x w^{\prime }\left (x \right )+6 w \left (x \right ) = 0 \end {align*}

This is Euler second order ODE. Let the solution be \(w \left (x \right ) = x^r\), then \(w'=r x^{r-1}\) and \(w''=r(r-1) x^{r-2}\). Substituting these back into the given ODE gives \[ x^{2}(r(r-1))x^{r-2}+6 x r x^{r-1}+6 x^{r} = 0 \] Simplifying gives \[ r \left (r -1\right )x^{r}+6 r\,x^{r}+6 x^{r} = 0 \] Since \(x^{r}\neq 0\) then dividing throughout by \(x^{r}\) gives \[ r \left (r -1\right )+6 r+6 = 0 \] Or \[ r^{2}+5 r +6 = 0 \tag {1} \] Equation (1) is the characteristic equation. Its roots determine the form of the general solution. Using the quadratic equation the roots are \begin {align*} r_1 &= -3\\ r_2 &= -2 \end {align*}

Since the roots are real and distinct, then the general solution is \[ w \left (x \right )= c_{1} w_1 + c_{2} w_2 \] Where \(w_1 = x^{r_1}\) and \(w_2 = x^{r_2} \). Hence \[ w \left (x \right ) = \frac {c_{1}}{x^{3}}+\frac {c_{2}}{x^{2}} \] But since \(v^{\prime }\left (x \right ) = w \left (x \right )\) then we now need to solve the ode \(v^{\prime }\left (x \right ) = \frac {c_{1}}{x^{3}}+\frac {c_{2}}{x^{2}}\). Integrating both sides gives \begin {align*} v \left (x \right ) &= \int { \frac {c_{2} x +c_{1}}{x^{3}}\,\mathop {\mathrm {d}x}}\\ &= -\frac {2 c_{2} x +c_{1}}{2 x^{2}}+c_{3} \end {align*}

But since \(y^{\prime } = v \left (x \right )\) then we now need to solve the ode \(y^{\prime } = -\frac {2 c_{2} x +c_{1}}{2 x^{2}}+c_{3}\). Integrating both sides gives \begin {align*} y &= \int { -\frac {-2 c_{3} x^{2}+2 c_{2} x +c_{1}}{2 x^{2}}\,\mathop {\mathrm {d}x}}\\ &= c_{3} x -c_{2} \ln \left (x \right )+\frac {c_{1}}{2 x}+c_{4} \end {align*}

Initial conditions are used to solve for the constants of integration.

Looking at the above solution \begin {align*} y = c_{3} x -c_{2} \ln \left (x \right )+\frac {c_{1}}{2 x}+c_{4} \tag {1} \end {align*}

Initial conditions are now substituted in the above solution. This will generate the required equations to solve for the integration constants. substituting \(y = 0\) and \(x = 1\) in the above gives \begin {align*} 0 = \frac {c_{1}}{2}+c_{3} +c_{4}\tag {1A} \end {align*}

Taking derivative of the solution gives \begin {align*} y^{\prime } = -\frac {c_{2}}{x}-\frac {c_{1}}{2 x^{2}}+c_{3} \end {align*}

substituting \(y^{\prime } = 0\) and \(x = 1\) in the above gives \begin {align*} 0 = -\frac {c_{1}}{2}-c_{2} +c_{3}\tag {2A} \end {align*}

Equations {1A,2A} are now solved for \(\{c_{1}, c_{2}, c_{3}, c_{4}\}\). Solving for the constants gives \begin {align*} c_{1}&=-2 c_{3} -2 c_{4}\\ c_{2}&=2 c_{3} +c_{4} \end {align*}

Substituting these values back in above solution results in \begin {align*} y = \frac {-2 \ln \left (x \right ) x c_{3} -\ln \left (x \right ) x c_{4} +c_{3} x^{2}+x c_{4} -c_{3} -c_{4}}{x} \end {align*}

Which simplifies to \[ y = \frac {-2 x \left (c_{3} +\frac {c_{4}}{2}\right ) \ln \left (x \right )+\left (x -1\right ) \left (c_{3} x +c_{3} +c_{4} \right )}{x} \]

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= \frac {-2 x \left (c_{3} +\frac {c_{4}}{2}\right ) \ln \left (x \right )+\left (x -1\right ) \left (c_{3} x +c_{3} +c_{4} \right )}{x} \\ \end{align*}

Verification of solutions

\[ y = \frac {-2 x \left (c_{3} +\frac {c_{4}}{2}\right ) \ln \left (x \right )+\left (x -1\right ) \left (c_{3} x +c_{3} +c_{4} \right )}{x} \] Verified OK.

22.18.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left [x^{2} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime } x +6 y^{\prime \prime }=0, y \left (1\right )=0, y^{\prime }{\raise{-0.36em}{\Big |}}{\mstack {}{_{\left \{x \hiderel {=}1\right \}}}}=0\right ] \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & y^{\prime \prime \prime \prime } \\ \bullet & {} & \textrm {Isolate 4th derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime \prime }=-\frac {6 \left (y^{\prime \prime \prime } x +y^{\prime \prime }\right )}{x^{2}} \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime \prime }+\frac {6 y^{\prime \prime \prime }}{x}+\frac {6 y^{\prime \prime }}{x^{2}}=0 \\ \bullet & {} & \textrm {Multiply by denominators of the ODE}\hspace {3pt} \\ {} & {} & x^{2} y^{\prime \prime \prime \prime }+6 y^{\prime \prime \prime } x +6 y^{\prime \prime }=0 \\ \bullet & {} & \textrm {Make a change of variables}\hspace {3pt} \\ {} & {} & t =\ln \left (x \right ) \\ \square & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {1st}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime }=\left (\frac {d}{d t}y \left (t \right )\right ) t^{\prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime }=\frac {\frac {d}{d t}y \left (t \right )}{x} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {2nd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{2}+t^{\prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime }=\frac {\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}-\frac {\frac {d}{d t}y \left (t \right )}{x^{2}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {3rd}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{3}+3 t^{\prime }\left (x \right ) t^{\prime \prime }\left (x \right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+t^{\prime \prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime }=\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}} \\ {} & \circ & \textrm {Calculate the}\hspace {3pt} \hspace {3pt}\textrm {4th}\hspace {3pt} \hspace {3pt}\textrm {derivative of}\hspace {3pt} \hspace {3pt}\textrm {y}\hspace {3pt} \hspace {3pt}\textrm {with respect to}\hspace {3pt} \hspace {3pt}\textrm {x}\hspace {3pt} \hspace {3pt}\textrm {, using the chain rule}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime \prime }=\left (\frac {d^{4}}{d t^{4}}y \left (t \right )\right ) {t^{\prime }\left (x \right )}^{4}+3 {t^{\prime }\left (x \right )}^{2} t^{\prime \prime }\left (x \right ) \left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right )+3 {t^{\prime \prime }\left (x \right )}^{2} \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+3 \left (t^{\prime \prime \prime }\left (x \right ) \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )+\left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right ) t^{\prime }\left (x \right ) t^{\prime \prime }\left (x \right )\right ) t^{\prime }\left (x \right )+t^{\prime \prime \prime \prime }\left (x \right ) \left (\frac {d}{d t}y \left (t \right )\right )+\left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right ) t^{\prime }\left (x \right ) t^{\prime \prime \prime }\left (x \right ) \\ {} & \circ & \textrm {Compute derivative}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime \prime }=\frac {\frac {d^{4}}{d t^{4}}y \left (t \right )}{x^{4}}-\frac {3 \left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right )}{x^{4}}+\frac {5 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{4}}+\frac {3 \left (\frac {2 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}-\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}\right )}{x}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{4}} \\ & {} & \textrm {Substitute the change of variables back into the ODE}\hspace {3pt} \\ {} & {} & x^{2} \left (\frac {\frac {d^{4}}{d t^{4}}y \left (t \right )}{x^{4}}-\frac {3 \left (\frac {d^{3}}{d t^{3}}y \left (t \right )\right )}{x^{4}}+\frac {5 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{4}}+\frac {3 \left (\frac {2 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}-\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}\right )}{x}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{4}}\right )+6 \left (\frac {\frac {d^{3}}{d t^{3}}y \left (t \right )}{x^{3}}-\frac {3 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{3}}+\frac {2 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{3}}\right ) x +\frac {6 \left (\frac {d^{2}}{d t^{2}}y \left (t \right )\right )}{x^{2}}-\frac {6 \left (\frac {d}{d t}y \left (t \right )\right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Simplify}\hspace {3pt} \\ {} & {} & \frac {\frac {d^{4}}{d t^{4}}y \left (t \right )-\frac {d^{2}}{d t^{2}}y \left (t \right )}{x^{2}}=0 \\ \bullet & {} & \textrm {Isolate 4th derivative}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d t^{4}}y \left (t \right )=\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ \bullet & {} & \textrm {Group terms with}\hspace {3pt} y \left (t \right )\hspace {3pt}\textrm {on the lhs of the ODE and the rest on the rhs of the ODE; ODE is linear}\hspace {3pt} \\ {} & {} & \frac {d^{4}}{d t^{4}}y \left (t \right )-\frac {d^{2}}{d t^{2}}y \left (t \right )=0 \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (t \right ) \\ {} & {} & y_{1}\left (t \right )=y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (t \right ) \\ {} & {} & y_{2}\left (t \right )=\frac {d}{d t}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (t \right ) \\ {} & {} & y_{3}\left (t \right )=\frac {d^{2}}{d t^{2}}y \left (t \right ) \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{4}\left (t \right ) \\ {} & {} & y_{4}\left (t \right )=\frac {d^{3}}{d t^{3}}y \left (t \right ) \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} \frac {d}{d t}y_{4}\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & \frac {d}{d t}y_{4}\left (t \right )=y_{3}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (t \right )=\frac {d}{d t}y_{1}\left (t \right ), y_{3}\left (t \right )=\frac {d}{d t}y_{2}\left (t \right ), y_{4}\left (t \right )=\frac {d}{d t}y_{3}\left (t \right ), \frac {d}{d t}y_{4}\left (t \right )=y_{3}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{c} y_{1}\left (t \right ) \\ y_{2}\left (t \right ) \\ y_{3}\left (t \right ) \\ y_{4}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & \frac {d}{d t}{\moverset {\rightarrow }{y}}\left (t \right )=A \cdot {\moverset {\rightarrow }{y}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-1, \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ], \left [0, \left [\begin {array}{c} 0 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ], \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [-1, \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{1}={\mathrm e}^{-t}\cdot \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 1 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{2}=\left [\begin {array}{c} 1 \\ 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [0, \left [\begin {array}{c} 0 \\ 0 \\ 0 \\ 0 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{3}=\left [\begin {array}{c} 0 \\ 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}_{4}={\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}+c_{2} {\moverset {\rightarrow }{y}}_{2}+c_{3} {\moverset {\rightarrow }{y}}_{3}+c_{4} {\moverset {\rightarrow }{y}}_{4} \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\mathrm e}^{-t}\cdot \left [\begin {array}{c} -1 \\ 1 \\ -1 \\ 1 \end {array}\right ]+c_{4} {\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \\ 1 \end {array}\right ]+\left [\begin {array}{c} c_{2} \\ 0 \\ 0 \\ 0 \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y \left (t \right )=-c_{1} {\mathrm e}^{-t}+c_{4} {\mathrm e}^{t}+c_{2} \\ \bullet & {} & \textrm {Change variables back using}\hspace {3pt} t =\ln \left (x \right ) \\ {} & {} & y=-\frac {c_{1}}{x}+x c_{4} +c_{2} \end {array} \]

Maple trace

`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
<- LODE of Euler type successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 27

dsolve([x^3*diff(y(x),x$4)+6*x^2*diff(y(x),x$3)+6*x*diff(y(x),x$2)=0,y(1) = 0, D(y)(1) = 0],y(x), singsol=all)
 

\[ y \left (x \right ) = -c_{3} -c_{4} +\left (c_{3} -c_{4} \right ) \ln \left (x \right )+\frac {c_{3}}{x}+c_{4} x \]

Solution by Mathematica

Time used: 0.026 (sec). Leaf size: 34

DSolve[{x^3*y''''[x]+6*x^2*y'''[x]+6*x*y''[x]==0,{y[1]==0,y'[1]==0}},y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to \frac {(x-1) (c_1 (x-1)+2 c_2 x)}{2 x}-c_2 \log (x) \]