1.6 problem Ex. 6(v), page 257

Internal problem ID [5476]
Internal file name [OUTPUT/4724_Sunday_June_05_2022_03_04_06_PM_73340437/index.tex]

Book: A treatise on Differential Equations by A. R. Forsyth. 6th edition. 1929. Macmillan Co. ltd. New York, reprinted 1956
Section: Chapter VI. Note I. Integration of linear equations in series by the method of Frobenius. page 243
Problem number: Ex. 6(v), page 257.
ODE order: 2.
ODE degree: 1.

The type(s) of ODE detected by this program : "second order series method. Regular singular point. Difference is integer"

Maple gives the following as the ode type

[[_2nd_order, _with_linear_symmetries]]

\[ \boxed {\left (1-x \right ) x^{2} y^{\prime \prime }+\left (5 x -4\right ) x y^{\prime }+\left (6-9 x \right ) y=0} \] With the expansion point for the power series method at \(x = 0\).

The type of the expansion point is first determined. This is done on the homogeneous part of the ODE. \[ \left (-x^{3}+x^{2}\right ) y^{\prime \prime }+\left (5 x^{2}-4 x \right ) y^{\prime }+\left (6-9 x \right ) y = 0 \] The following is summary of singularities for the above ode. Writing the ode as \begin {align*} y^{\prime \prime }+p(x) y^{\prime } + q(x) y &=0 \end {align*}

Where \begin {align*} p(x) &= -\frac {5 x -4}{\left (x -1\right ) x}\\ q(x) &= \frac {-6+9 x}{\left (x -1\right ) x^{2}}\\ \end {align*}

Table 4: Table \(p(x),q(x)\) singularites.
\(p(x)=-\frac {5 x -4}{\left (x -1\right ) x}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = 1\) \(\text {``regular''}\)
\(q(x)=\frac {-6+9 x}{\left (x -1\right ) x^{2}}\)
singularity type
\(x = 0\) \(\text {``regular''}\)
\(x = 1\) \(\text {``regular''}\)

Combining everything together gives the following summary of singularities for the ode as

Regular singular points : \([0, 1, \infty ]\)

Irregular singular points : \([]\)

Since \(x = 0\) is regular singular point, then Frobenius power series is used. The ode is normalized to be \[ -y^{\prime \prime } \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) y^{\prime }+\left (6-9 x \right ) y = 0 \] Let the solution be represented as Frobenius power series of the form \[ y = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r} \] Then \begin{align*} y^{\prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1} \\ y^{\prime \prime } &= \moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2} \\ \end{align*} Substituting the above back into the ode gives \begin{equation} \tag{1} -\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) \left (n +r -1\right ) a_{n} x^{n +r -2}\right ) \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (n +r \right ) a_{n} x^{n +r -1}\right )+\left (6-9 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}5 x^{1+n +r} a_{n} \left (n +r \right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-4 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}6 a_{n} x^{n +r}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-9 x^{1+n +r} a_{n}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +r\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +r}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{1+n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}5 x^{1+n +r} a_{n} \left (n +r \right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}5 a_{n -1} \left (n +r -1\right ) x^{n +r} \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-9 x^{1+n +r} a_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-9 a_{n -1} x^{n +r}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +r\). \begin{equation} \tag{2B} \moverset {\infty }{\munderset {n =1}{\sum }}\left (-a_{n -1} \left (n +r -1\right ) \left (n +r -2\right ) x^{n +r}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}5 a_{n -1} \left (n +r -1\right ) x^{n +r}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-4 x^{n +r} a_{n} \left (n +r \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}6 a_{n} x^{n +r}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-9 a_{n -1} x^{n +r}\right ) = 0 \end{equation} The indicial equation is obtained from \(n = 0\). From Eq (2B) this gives \[ x^{n +r} a_{n} \left (n +r \right ) \left (n +r -1\right )-4 x^{n +r} a_{n} \left (n +r \right )+6 a_{n} x^{n +r} = 0 \] When \(n = 0\) the above becomes \[ x^{r} a_{0} r \left (-1+r \right )-4 x^{r} a_{0} r +6 a_{0} x^{r} = 0 \] Or \[ \left (x^{r} r \left (-1+r \right )-4 x^{r} r +6 x^{r}\right ) a_{0} = 0 \] Since \(a_{0}\neq 0\) then the above simplifies to \[ \left (r^{2}-5 r +6\right ) x^{r} = 0 \] Since the above is true for all \(x\) then the indicial equation becomes \[ r^{2}-5 r +6 = 0 \] Solving for \(r\) gives the roots of the indicial equation as \begin {align*} r_1 &= 3\\ r_2 &= 2 \end {align*}

Since \(a_{0}\neq 0\) then the indicial equation becomes \[ \left (r^{2}-5 r +6\right ) x^{r} = 0 \] Solving for \(r\) gives the roots of the indicial equation as \([3, 2]\).

Since \(r_1 - r_2 = 1\) is an integer, then we can construct two linearly independent solutions \begin {align*} y_{1}\left (x \right ) &= x^{r_{1}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+x^{r_{2}} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= x^{3} \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n}\right )\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+x^{2} \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n}\right ) \end {align*}

Or \begin {align*} y_{1}\left (x \right ) &= \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +3}\\ y_{2}\left (x \right ) &= C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +2}\right ) \end {align*}

Where \(C\) above can be zero. We start by finding \(y_{1}\). Eq (2B) derived above is now used to find all \(a_{n}\) coefficients. The case \(n = 0\) is skipped since it was used to find the roots of the indicial equation. \(a_{0}\) is arbitrary and taken as \(a_{0} = 1\). For \(1\le n\) the recursive equation is \begin{equation} \tag{3} -a_{n -1} \left (n +r -1\right ) \left (n +r -2\right )+a_{n} \left (n +r \right ) \left (n +r -1\right )+5 a_{n -1} \left (n +r -1\right )-4 a_{n} \left (n +r \right )+6 a_{n}-9 a_{n -1} = 0 \end{equation} Solving for \(a_{n}\) from recursive equation (4) gives \[ a_{n} = \frac {a_{n -1} \left (n^{2}+2 n r +r^{2}-8 n -8 r +16\right )}{n^{2}+2 n r +r^{2}-5 n -5 r +6}\tag {4} \] Which for the root \(r = 3\) becomes \[ a_{n} = \frac {a_{n -1} \left (n -1\right )^{2}}{n \left (1+n \right )}\tag {5} \] At this point, it is a good idea to keep track of \(a_{n}\) in a table both before substituting \(r = 3\) and after as more terms are found using the above recursive equation.

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)

For \(n = 1\), using the above recursive equation gives \[ a_{1}=\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2} \] Which for the root \(r = 3\) becomes \[ a_{1}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}\) \(0\)

For \(n = 2\), using the above recursive equation gives \[ a_{2}=\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (-1+r \right )^{2} r} \] Which for the root \(r = 3\) becomes \[ a_{2}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}\) \(0\)
\(a_{2}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (-1+r \right )^{2} r}\) \(0\)

For \(n = 3\), using the above recursive equation gives \[ a_{3}=\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right ) r^{2}} \] Which for the root \(r = 3\) becomes \[ a_{3}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}\) \(0\)
\(a_{2}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (-1+r \right )^{2} r}\) \(0\)
\(a_{3}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right ) r^{2}}\) \(0\)

For \(n = 4\), using the above recursive equation gives \[ a_{4}=\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right )^{2} \left (r +2\right )} \] Which for the root \(r = 3\) becomes \[ a_{4}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}\) \(0\)
\(a_{2}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (-1+r \right )^{2} r}\) \(0\)
\(a_{3}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right ) r^{2}}\) \(0\)
\(a_{4}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right )^{2} \left (r +2\right )}\) \(0\)

For \(n = 5\), using the above recursive equation gives \[ a_{5}=\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +3\right ) \left (r +2\right )^{2}} \] Which for the root \(r = 3\) becomes \[ a_{5}=0 \] And the table now becomes

\(n\) \(a_{n ,r}\) \(a_{n}\)
\(a_{0}\) \(1\) \(1\)
\(a_{1}\) \(\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}\) \(0\)
\(a_{2}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (-1+r \right )^{2} r}\) \(0\)
\(a_{3}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right ) r^{2}}\) \(0\)
\(a_{4}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +1\right )^{2} \left (r +2\right )}\) \(0\)
\(a_{5}\) \(\frac {\left (r -2\right ) \left (r -3\right )^{2}}{\left (r +3\right ) \left (r +2\right )^{2}}\) \(0\)

Using the above table, then the solution \(y_{1}\left (x \right )\) is \begin {align*} y_{1}\left (x \right )&= x^{3} \left (a_{0}+a_{1} x +a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}\dots \right ) \\ &= x^{3} \left (1+O\left (x^{6}\right )\right ) \end {align*}

Now the second solution \(y_{2}\left (x \right )\) is found. Let \[ r_{1}-r_{2} = N \] Where \(N\) is positive integer which is the difference between the two roots. \(r_{1}\) is taken as the larger root. Hence for this problem we have \(N=1\). Now we need to determine if \(C\) is zero or not. This is done by finding \(\lim _{r\rightarrow r_{2}}a_{1}\left (r \right )\). If this limit exists, then \(C = 0\), else we need to keep the log term and \(C \neq 0\). The above table shows that \begin {align*} a_N &= a_{1} \\ &= \frac {\left (r -3\right )^{2}}{r^{2}-3 r +2} \end {align*}

Therefore \begin {align*} \lim _{r\rightarrow r_{2}}\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}&= \lim _{r\rightarrow 2}\frac {\left (r -3\right )^{2}}{r^{2}-3 r +2}\\ &= \textit {undefined} \end {align*}

Since the limit does not exist then the log term is needed. Therefore the second solution has the form \[ y_{2}\left (x \right ) = C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) \] Therefore \begin{align*} \frac {d}{d x}y_{2}\left (x \right ) &= C y_{1}^{\prime }\left (x \right ) \ln \left (x \right )+\frac {C y_{1}\left (x \right )}{x}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x}\right ) \\ &= C y_{1}^{\prime }\left (x \right ) \ln \left (x \right )+\frac {C y_{1}\left (x \right )}{x}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-1+n +r_{2}} b_{n} \left (n +r_{2}\right )\right ) \\ \frac {d^{2}}{d x^{2}}y_{2}\left (x \right ) &= C y_{1}^{\prime \prime }\left (x \right ) \ln \left (x \right )+\frac {2 C y_{1}^{\prime }\left (x \right )}{x}-\frac {C y_{1}\left (x \right )}{x^{2}}+\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right ) \\ &= C y_{1}^{\prime \prime }\left (x \right ) \ln \left (x \right )+\frac {2 C y_{1}^{\prime }\left (x \right )}{x}-\frac {C y_{1}\left (x \right )}{x^{2}}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-2+n +r_{2}} b_{n} \left (n +r_{2}\right ) \left (-1+n +r_{2}\right )\right ) \\ \end{align*} Substituting these back into the given ode \(-y^{\prime \prime } \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) y^{\prime }+\left (6-9 x \right ) y = 0\) gives \[ -\left (C y_{1}^{\prime \prime }\left (x \right ) \ln \left (x \right )+\frac {2 C y_{1}^{\prime }\left (x \right )}{x}-\frac {C y_{1}\left (x \right )}{x^{2}}+\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right )\right ) \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) \left (C y_{1}^{\prime }\left (x \right ) \ln \left (x \right )+\frac {C y_{1}\left (x \right )}{x}+\left (\moverset {\infty }{\munderset {n =0}{\sum }}\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x}\right )\right )+\left (6-9 x \right ) \left (C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right )\right ) = 0 \] Which can be written as \begin{equation} \tag{7} \left (\left (-y_{1}^{\prime \prime }\left (x \right ) \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) y_{1}^{\prime }\left (x \right )+\left (6-9 x \right ) y_{1}\left (x \right )\right ) \ln \left (x \right )-\left (\frac {2 y_{1}^{\prime }\left (x \right )}{x}-\frac {y_{1}\left (x \right )}{x^{2}}\right ) \left (x -1\right ) x^{2}+\frac {\left (5 x^{2}-4 x \right ) y_{1}\left (x \right )}{x}\right ) C -\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right )\right ) \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x}\right )+\left (6-9 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) = 0 \end{equation} But since \(y_{1}\left (x \right )\) is a solution to the ode, then \[ -y_{1}^{\prime \prime }\left (x \right ) \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) y_{1}^{\prime }\left (x \right )+\left (6-9 x \right ) y_{1}\left (x \right ) = 0 \] Eq (7) simplifes to \begin{equation} \tag{8} \left (-\left (\frac {2 y_{1}^{\prime }\left (x \right )}{x}-\frac {y_{1}\left (x \right )}{x^{2}}\right ) \left (x -1\right ) x^{2}+\frac {\left (5 x^{2}-4 x \right ) y_{1}\left (x \right )}{x}\right ) C -\left (\moverset {\infty }{\munderset {n =0}{\sum }}\left (\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )^{2}}{x^{2}}-\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x^{2}}\right )\right ) \left (x -1\right ) x^{2}+\left (5 x^{2}-4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}\frac {b_{n} x^{n +r_{2}} \left (n +r_{2}\right )}{x}\right )+\left (6-9 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) = 0 \end{equation} Substituting \(y_{1} = \moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r_{1}}\) into the above gives \begin{equation} \tag{9} \left (-2 x \left (x -1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-1+n +r_{1}} a_{n} \left (n +r_{1}\right )\right )+\left (6 x -5\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +r_{1}}\right )\right ) C +\left (-x^{3}+x^{2}\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-2+n +r_{2}} b_{n} \left (n +r_{2}\right ) \left (-1+n +r_{2}\right )\right )+\left (5 x^{2}-4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{-1+n +r_{2}} b_{n} \left (n +r_{2}\right )\right )+3 \left (2-3 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) = 0 \end{equation} Since \(r_{1} = 3\) and \(r_{2} = 2\) then the above becomes \begin{equation} \tag{10} \left (-2 x \left (x -1\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +2} a_{n} \left (n +3\right )\right )+\left (6 x -5\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}a_{n} x^{n +3}\right )\right ) C +\left (-x^{3}+x^{2}\right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n} b_{n} \left (n +2\right ) \left (1+n \right )\right )+\left (5 x^{2}-4 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{1+n} b_{n} \left (n +2\right )\right )+3 \left (2-3 x \right ) \left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +2}\right ) = 0 \end{equation} Which simplifies to \begin{equation} \tag{2A} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 C \,x^{n +4} a_{n} \left (n +3\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}2 C \,x^{n +3} a_{n} \left (n +3\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}6 C \,x^{n +4} a_{n}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-5 C \,x^{n +3} a_{n}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +3} b_{n} \left (n +2\right ) \left (1+n \right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +2} b_{n} \left (n^{2}+3 n +2\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}5 x^{n +3} b_{n} \left (n +2\right )\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-4 x^{n +2} b_{n} \left (n +2\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}6 b_{n} x^{n +2}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-9 x^{n +3} b_{n}\right ) = 0 \end{equation} The next step is to make all powers of \(x\) be \(n +2\) in each summation term. Going over each summation term above with power of \(x\) in it which is not already \(x^{n +2}\) and adjusting the power and the corresponding index gives \begin{align*} \moverset {\infty }{\munderset {n =0}{\sum }}\left (-2 C \,x^{n +4} a_{n} \left (n +3\right )\right ) &= \moverset {\infty }{\munderset {n =2}{\sum }}\left (-2 C a_{n -2} \left (1+n \right ) x^{n +2}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}2 C \,x^{n +3} a_{n} \left (n +3\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}2 C a_{n -1} \left (n +2\right ) x^{n +2} \\ \moverset {\infty }{\munderset {n =0}{\sum }}6 C \,x^{n +4} a_{n} &= \moverset {\infty }{\munderset {n =2}{\sum }}6 C a_{n -2} x^{n +2} \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-5 C \,x^{n +3} a_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-5 C a_{n -1} x^{n +2}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-x^{n +3} b_{n} \left (n +2\right ) \left (1+n \right )\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-b_{n -1} n \left (1+n \right ) x^{n +2}\right ) \\ \moverset {\infty }{\munderset {n =0}{\sum }}5 x^{n +3} b_{n} \left (n +2\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}5 b_{n -1} \left (1+n \right ) x^{n +2} \\ \moverset {\infty }{\munderset {n =0}{\sum }}\left (-9 x^{n +3} b_{n}\right ) &= \moverset {\infty }{\munderset {n =1}{\sum }}\left (-9 b_{n -1} x^{n +2}\right ) \\ \end{align*} Substituting all the above in Eq (2A) gives the following equation where now all powers of \(x\) are the same and equal to \(n +2\). \begin{equation} \tag{2B} \moverset {\infty }{\munderset {n =2}{\sum }}\left (-2 C a_{n -2} \left (1+n \right ) x^{n +2}\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}2 C a_{n -1} \left (n +2\right ) x^{n +2}\right )+\left (\moverset {\infty }{\munderset {n =2}{\sum }}6 C a_{n -2} x^{n +2}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-5 C a_{n -1} x^{n +2}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-b_{n -1} n \left (1+n \right ) x^{n +2}\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}x^{n +2} b_{n} \left (n^{2}+3 n +2\right )\right )+\left (\moverset {\infty }{\munderset {n =1}{\sum }}5 b_{n -1} \left (1+n \right ) x^{n +2}\right )+\moverset {\infty }{\munderset {n =0}{\sum }}\left (-4 x^{n +2} b_{n} \left (n +2\right )\right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}6 b_{n} x^{n +2}\right )+\moverset {\infty }{\munderset {n =1}{\sum }}\left (-9 b_{n -1} x^{n +2}\right ) = 0 \end{equation} For \(n=0\) in Eq. (2B), we choose arbitray value for \(b_{0}\) as \(b_{0} = 1\). For \(n=N\), where \(N=1\) which is the difference between the two roots, we are free to choose \(b_{1} = 0\). Hence for \(n=1\), Eq (2B) gives \[ C -1 = 0 \] Which is solved for \(C\). Solving for \(C\) gives \[ C=1 \] For \(n=2\), Eq (2B) gives \[ 3 C a_{1}+2 b_{2} = 0 \] Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives \[ 2 b_{2} = 0 \] Solving the above for \(b_{2}\) gives \[ b_{2}=0 \] For \(n=3\), Eq (2B) gives \[ \left (-2 a_{1}+5 a_{2}\right ) C -b_{2}+6 b_{3} = 0 \] Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives \[ 6 b_{3} = 0 \] Solving the above for \(b_{3}\) gives \[ b_{3}=0 \] For \(n=4\), Eq (2B) gives \[ \left (-4 a_{2}+7 a_{3}\right ) C -4 b_{3}+12 b_{4} = 0 \] Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives \[ 12 b_{4} = 0 \] Solving the above for \(b_{4}\) gives \[ b_{4}=0 \] For \(n=5\), Eq (2B) gives \[ \left (-6 a_{3}+9 a_{4}\right ) C -9 b_{4}+20 b_{5} = 0 \] Which when replacing the above values found already for \(b_{n}\) and the values found earlier for \(a_{n}\) and for \(C\), gives \[ 20 b_{5} = 0 \] Solving the above for \(b_{5}\) gives \[ b_{5}=0 \] Now that we found all \(b_{n}\) and \(C\), we can calculate the second solution from \[ y_{2}\left (x \right ) = C y_{1}\left (x \right ) \ln \left (x \right )+\left (\moverset {\infty }{\munderset {n =0}{\sum }}b_{n} x^{n +r_{2}}\right ) \] Using the above value found for \(C=1\) and all \(b_{n}\), then the second solution becomes \[ y_{2}\left (x \right )= 1\eslowast \left (x^{3} \left (1+O\left (x^{6}\right )\right )\right ) \ln \left (x \right )+x^{2} \left (1+O\left (x^{6}\right )\right ) \] Therefore the homogeneous solution is \begin{align*} y_h(x) &= c_{1} y_{1}\left (x \right )+c_{2} y_{2}\left (x \right ) \\ &= c_{1} x^{3} \left (1+O\left (x^{6}\right )\right ) + c_{2} \left (1\eslowast \left (x^{3} \left (1+O\left (x^{6}\right )\right )\right ) \ln \left (x \right )+x^{2} \left (1+O\left (x^{6}\right )\right )\right ) \\ \end{align*} Hence the final solution is \begin{align*} y &= y_h \\ &= c_{1} x^{3} \left (1+O\left (x^{6}\right )\right )+c_{2} \left (x^{3} \left (1+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{2} \left (1+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= c_{1} x^{3} \left (1+O\left (x^{6}\right )\right )+c_{2} \left (x^{3} \left (1+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{2} \left (1+O\left (x^{6}\right )\right )\right ) \\ \end{align*}

Verification of solutions

\[ y = c_{1} x^{3} \left (1+O\left (x^{6}\right )\right )+c_{2} \left (x^{3} \left (1+O\left (x^{6}\right )\right ) \ln \left (x \right )+x^{2} \left (1+O\left (x^{6}\right )\right )\right ) \] Verified OK.

Maple trace Kovacic algorithm successful

`Methods for second order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
checking if the LODE is of Euler type 
trying a symmetry of the form [xi=0, eta=F(x)] 
checking if the LODE is missing y 
-> Trying a Liouvillian solution using Kovacics algorithm 
   A Liouvillian solution exists 
   Reducible group (found an exponential solution) 
   Group is reducible, not completely reducible 
<- Kovacics algorithm successful`
 

Solution by Maple

Time used: 0.031 (sec). Leaf size: 43

Order:=6; 
dsolve((1-x)*x^2*diff(y(x),x$2)+(5*x-4)*x*diff(y(x),x)+(6-9*x)*y(x)=0,y(x),type='series',x=0);
 

\[ y \left (x \right ) = x^{2} \left (\ln \left (x \right ) \left (x +\operatorname {O}\left (x^{6}\right )\right ) c_{2} +c_{1} x \left (1+\operatorname {O}\left (x^{6}\right )\right )+\left (1-x +\operatorname {O}\left (x^{6}\right )\right ) c_{2} \right ) \]

Solution by Mathematica

Time used: 0.05 (sec). Leaf size: 30

AsymptoticDSolveValue[(1-x)*x^2*y''[x]+(5*x-4)*x*y'[x]+(6-9*x)*y[x]==0,y[x],{x,0,5}]
 

\[ y(x)\to c_2 x^3+c_1 \left (x^3 \log (x)-x^2 (3 x-1)\right ) \]