7.2 problem 4(b)

7.2.1 Maple step by step solution

Internal problem ID [5973]
Internal file name [OUTPUT/5221_Sunday_June_05_2022_03_27_50_PM_1305271/index.tex]

Book: An introduction to Ordinary Differential Equations. Earl A. Coddington. Dover. NY 1961
Section: Chapter 2. Linear equations with constant coefficients. Page 74
Problem number: 4(b).
ODE order: 4.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_high_order, _missing_x]]

\[ \boxed {y^{\prime \prime \prime \prime }+16 y=0} \] The characteristic equation is \[ \lambda ^{4}+16 = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= \sqrt {2}+i \sqrt {2}\\ \lambda _2 &= -\sqrt {2}+i \sqrt {2}\\ \lambda _3 &= -\sqrt {2}-i \sqrt {2}\\ \lambda _4 &= -i \sqrt {2}+\sqrt {2} \end {align*}

Therefore the homogeneous solution is \[ y_h(x)={\mathrm e}^{\left (-\sqrt {2}+i \sqrt {2}\right ) x} c_{1} +{\mathrm e}^{\left (-i \sqrt {2}+\sqrt {2}\right ) x} c_{2} +{\mathrm e}^{\left (\sqrt {2}+i \sqrt {2}\right ) x} c_{3} +{\mathrm e}^{\left (-\sqrt {2}-i \sqrt {2}\right ) x} c_{4} \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} y_1 &= {\mathrm e}^{\left (-\sqrt {2}+i \sqrt {2}\right ) x}\\ y_2 &= {\mathrm e}^{\left (-i \sqrt {2}+\sqrt {2}\right ) x}\\ y_3 &= {\mathrm e}^{\left (\sqrt {2}+i \sqrt {2}\right ) x}\\ y_4 &= {\mathrm e}^{\left (-\sqrt {2}-i \sqrt {2}\right ) x} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} y &= {\mathrm e}^{\left (-\sqrt {2}+i \sqrt {2}\right ) x} c_{1} +{\mathrm e}^{\left (-i \sqrt {2}+\sqrt {2}\right ) x} c_{2} +{\mathrm e}^{\left (\sqrt {2}+i \sqrt {2}\right ) x} c_{3} +{\mathrm e}^{\left (-\sqrt {2}-i \sqrt {2}\right ) x} c_{4} \\ \end{align*}

Verification of solutions

\[ y = {\mathrm e}^{\left (-\sqrt {2}+i \sqrt {2}\right ) x} c_{1} +{\mathrm e}^{\left (-i \sqrt {2}+\sqrt {2}\right ) x} c_{2} +{\mathrm e}^{\left (\sqrt {2}+i \sqrt {2}\right ) x} c_{3} +{\mathrm e}^{\left (-\sqrt {2}-i \sqrt {2}\right ) x} c_{4} \] Verified OK.

7.2.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & y^{\prime \prime \prime \prime }+16 y=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 4 \\ {} & {} & y^{\prime \prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{1}\left (x \right ) \\ {} & {} & y_{1}\left (x \right )=y \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{2}\left (x \right ) \\ {} & {} & y_{2}\left (x \right )=y^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{3}\left (x \right ) \\ {} & {} & y_{3}\left (x \right )=y^{\prime \prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} y_{4}\left (x \right ) \\ {} & {} & y_{4}\left (x \right )=y^{\prime \prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} y_{4}^{\prime }\left (x \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & y_{4}^{\prime }\left (x \right )=-16 y_{1}\left (x \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [y_{2}\left (x \right )=y_{1}^{\prime }\left (x \right ), y_{3}\left (x \right )=y_{2}^{\prime }\left (x \right ), y_{4}\left (x \right )=y_{3}^{\prime }\left (x \right ), y_{4}^{\prime }\left (x \right )=-16 y_{1}\left (x \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}\left (x \right )=\left [\begin {array}{c} y_{1}\left (x \right ) \\ y_{2}\left (x \right ) \\ y_{3}\left (x \right ) \\ y_{4}\left (x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -16 & 0 & 0 & 0 \end {array}\right ]\cdot {\moverset {\rightarrow }{y}}\left (x \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{cccc} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -16 & 0 & 0 & 0 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}^{\prime }\left (x \right )=A \cdot {\moverset {\rightarrow }{y}}\left (x \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [-\sqrt {2}-\mathrm {I} \sqrt {2}, \left [\begin {array}{c} \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{-\sqrt {2}-\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ]\right ], \left [-\sqrt {2}+\mathrm {I} \sqrt {2}, \left [\begin {array}{c} \frac {1}{\left (-\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (-\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{-\sqrt {2}+\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ]\right ], \left [\sqrt {2}+\mathrm {I} \sqrt {2}, \left [\begin {array}{c} \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{\sqrt {2}+\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ]\right ], \left [-\mathrm {I} \sqrt {2}+\sqrt {2}, \left [\begin {array}{c} \frac {1}{\left (-\mathrm {I} \sqrt {2}+\sqrt {2}\right )^{3}} \\ \frac {1}{\left (-\mathrm {I} \sqrt {2}+\sqrt {2}\right )^{2}} \\ \frac {1}{-\mathrm {I} \sqrt {2}+\sqrt {2}} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [-\sqrt {2}-\mathrm {I} \sqrt {2}, \left [\begin {array}{c} \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{-\sqrt {2}-\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right ) x}\cdot \left [\begin {array}{c} \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{-\sqrt {2}-\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & {\mathrm e}^{-\sqrt {2}\, x}\cdot \left (\cos \left (\sqrt {2}\, x \right )-\mathrm {I} \sin \left (\sqrt {2}\, x \right )\right )\cdot \left [\begin {array}{c} \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{-\sqrt {2}-\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & {\mathrm e}^{-\sqrt {2}\, x}\cdot \left [\begin {array}{c} \frac {\cos \left (\sqrt {2}\, x \right )-\mathrm {I} \sin \left (\sqrt {2}\, x \right )}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {\cos \left (\sqrt {2}\, x \right )-\mathrm {I} \sin \left (\sqrt {2}\, x \right )}{\left (-\sqrt {2}-\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {\cos \left (\sqrt {2}\, x \right )-\mathrm {I} \sin \left (\sqrt {2}\, x \right )}{-\sqrt {2}-\mathrm {I} \sqrt {2}} \\ \cos \left (\sqrt {2}\, x \right )-\mathrm {I} \sin \left (\sqrt {2}\, x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{1}\left (x \right )={\mathrm e}^{-\sqrt {2}\, x}\cdot \left [\begin {array}{c} \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ -\frac {\sin \left (\sqrt {2}\, x \right )}{4} \\ -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ \cos \left (\sqrt {2}\, x \right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{2}\left (x \right )={\mathrm e}^{-\sqrt {2}\, x}\cdot \left [\begin {array}{c} \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}-\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ -\frac {\cos \left (\sqrt {2}\, x \right )}{4} \\ \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ -\sin \left (\sqrt {2}\, x \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [\sqrt {2}+\mathrm {I} \sqrt {2}, \left [\begin {array}{c} \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{\sqrt {2}+\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right ) x}\cdot \left [\begin {array}{c} \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{\sqrt {2}+\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & {\mathrm e}^{\sqrt {2}\, x}\cdot \left (\cos \left (\sqrt {2}\, x \right )+\mathrm {I} \sin \left (\sqrt {2}\, x \right )\right )\cdot \left [\begin {array}{c} \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {1}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {1}{\sqrt {2}+\mathrm {I} \sqrt {2}} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\sqrt {2}\, x}\cdot \left [\begin {array}{c} \frac {\cos \left (\sqrt {2}\, x \right )+\mathrm {I} \sin \left (\sqrt {2}\, x \right )}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{3}} \\ \frac {\cos \left (\sqrt {2}\, x \right )+\mathrm {I} \sin \left (\sqrt {2}\, x \right )}{\left (\sqrt {2}+\mathrm {I} \sqrt {2}\right )^{2}} \\ \frac {\cos \left (\sqrt {2}\, x \right )+\mathrm {I} \sin \left (\sqrt {2}\, x \right )}{\sqrt {2}+\mathrm {I} \sqrt {2}} \\ \cos \left (\sqrt {2}\, x \right )+\mathrm {I} \sin \left (\sqrt {2}\, x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{y}}_{3}\left (x \right )={\mathrm e}^{\sqrt {2}\, x}\cdot \left [\begin {array}{c} -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ \frac {\sin \left (\sqrt {2}\, x \right )}{4} \\ \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ \cos \left (\sqrt {2}\, x \right ) \end {array}\right ], {\moverset {\rightarrow }{y}}_{4}\left (x \right )={\mathrm e}^{\sqrt {2}\, x}\cdot \left [\begin {array}{c} -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}-\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ -\frac {\cos \left (\sqrt {2}\, x \right )}{4} \\ -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ \sin \left (\sqrt {2}\, x \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\moverset {\rightarrow }{y}}_{1}\left (x \right )+c_{2} {\moverset {\rightarrow }{y}}_{2}\left (x \right )+c_{3} {\moverset {\rightarrow }{y}}_{3}\left (x \right )+c_{4} {\moverset {\rightarrow }{y}}_{4}\left (x \right ) \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{y}}=c_{1} {\mathrm e}^{-\sqrt {2}\, x}\cdot \left [\begin {array}{c} \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ -\frac {\sin \left (\sqrt {2}\, x \right )}{4} \\ -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ \cos \left (\sqrt {2}\, x \right ) \end {array}\right ]+c_{2} {\mathrm e}^{-\sqrt {2}\, x}\cdot \left [\begin {array}{c} \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}-\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ -\frac {\cos \left (\sqrt {2}\, x \right )}{4} \\ \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ -\sin \left (\sqrt {2}\, x \right ) \end {array}\right ]+c_{3} {\mathrm e}^{\sqrt {2}\, x}\cdot \left [\begin {array}{c} -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ \frac {\sin \left (\sqrt {2}\, x \right )}{4} \\ \frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ \cos \left (\sqrt {2}\, x \right ) \end {array}\right ]+c_{4} {\mathrm e}^{\sqrt {2}\, x}\cdot \left [\begin {array}{c} -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{16}-\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{16} \\ -\frac {\cos \left (\sqrt {2}\, x \right )}{4} \\ -\frac {\cos \left (\sqrt {2}\, x \right ) \sqrt {2}}{4}+\frac {\sin \left (\sqrt {2}\, x \right ) \sqrt {2}}{4} \\ \sin \left (\sqrt {2}\, x \right ) \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & y=\frac {\sqrt {2}\, \left (\left (\left (c_{1} +c_{2} \right ) \cos \left (\sqrt {2}\, x \right )+\sin \left (\sqrt {2}\, x \right ) \left (c_{1} -c_{2} \right )\right ) {\mathrm e}^{-\sqrt {2}\, x}-{\mathrm e}^{\sqrt {2}\, x} \left (\left (c_{3} +c_{4} \right ) \cos \left (\sqrt {2}\, x \right )-\sin \left (\sqrt {2}\, x \right ) \left (c_{3} -c_{4} \right )\right )\right )}{16} \end {array} \]

Maple trace

`Methods for high order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.0 (sec). Leaf size: 65

dsolve(diff(y(x),x$4)+16*y(x)=0,y(x), singsol=all)
 

\[ y \left (x \right ) = -c_{1} {\mathrm e}^{-\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )-c_{2} {\mathrm e}^{\sqrt {2}\, x} \sin \left (\sqrt {2}\, x \right )+c_{3} {\mathrm e}^{-\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right )+c_{4} {\mathrm e}^{\sqrt {2}\, x} \cos \left (\sqrt {2}\, x \right ) \]

Solution by Mathematica

Time used: 0.004 (sec). Leaf size: 67

DSolve[y''''[x]+16*y[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ y(x)\to e^{-\sqrt {2} x} \left (\left (c_1 e^{2 \sqrt {2} x}+c_2\right ) \cos \left (\sqrt {2} x\right )+\left (c_4 e^{2 \sqrt {2} x}+c_3\right ) \sin \left (\sqrt {2} x\right )\right ) \]