2.1.2 problem 2
Internal
problem
ID
[4088]
Book
:
Applied
Differential
equations,
Newby
Curle.
Van
Nostrand
Reinhold.
1972
Section
:
Examples,
page
35
Problem
number
:
2
Date
solved
:
Tuesday, December 17, 2024 at 06:22:01 AM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _rational, _Clairaut]
Solve
\begin{align*} \left (y-x y^{\prime }\right )^{2}&=1+{y^{\prime }}^{2} \end{align*}
Solved as first order Clairaut ode
Time used: 0.196 (sec)
This is Clairaut ODE. It has the form
\[
y=x y^{\prime }+g\left (y^{\prime }\right )
\]
Where \(g\) is function of \(y'(x)\). Let \(p=y^{\prime }\) the ode becomes
\begin{align*} \left (-x p +y \right )^{2} = p^{2}+1 \end{align*}
Solving for \(y\) from the above results in
\begin{align*} y &= x p +\sqrt {p^{2}+1}\tag {1A} \\ y &= x p -\sqrt {p^{2}+1}\tag {2A} \end{align*}
Each of the above ode’s is a Clairaut ode which is now solved.
Solving ode 1A We start by replacing \(y^{\prime }\) by \(p\) which gives
\begin{align*} y&=x p +\sqrt {p^{2}+1}\\ &=x p +\sqrt {p^{2}+1} \end{align*}
Writing the ode as
\begin{align*} y&= x p +g \left (p \right ) \end{align*}
We now write \(g\equiv g\left ( p\right ) \) to make notation simpler but we should always remember that \(g\) is function of \(p\)
which in turn is function of \(x\). Hence the above becomes
\begin{align*} y = x p +g\tag {1} \end{align*}
Then we see that
\begin{align*} g&=\sqrt {p^{2}+1} \end{align*}
Taking derivative of (1) w.r.t. \(x\) gives
\begin{align*} p &=\frac {d}{dx}\left (x p+g\right ) \\ p & =\left ( p+x\frac {dp}{dx}\right ) +\left ( g' \frac {dp}{dx}\right ) \\ p & =p+\left ( x+g'\right ) \frac {dp}{dx}\\ 0 & =\left ( x+g'\right ) \frac {dp}{dx} \end{align*}
Where \(g'\) is derivative of \(g\left ( p\right ) \) w.r.t. \(p\).
The general solution is given by
\begin{align*} \frac {dp}{dx} & =0\\ p &=c_{1} \end{align*}
Substituting this in (1) gives the general solution as
\begin{align*} y = c_1 x +\sqrt {c_1^{2}+1} \end{align*}
The singular solution is found from solving for \(p\) from
\begin{align*} x+g'\left ( p\right ) &=0 \end{align*}
And substituting the result back in (1). Since we found above that \(g=\sqrt {p^{2}+1}\), then the above equation
becomes
\begin{align*} x+g'\left ( p\right ) &= x +\frac {p}{\sqrt {p^{2}+1}}\\ &= 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=y = \left (-x^{2}+1\right ) \sqrt {-\frac {1}{x^{2}-1}} \end{align*}
Substituting the above back in (1) results in
\begin{align*} y = \left (-x^{2}+1\right ) \sqrt {-\frac {1}{x^{2}-1}} \end{align*}
Solving ode 2A We start by replacing \(y^{\prime }\) by \(p\) which gives
\begin{align*} y&=x p -\sqrt {p^{2}+1}\\ &=x p -\sqrt {p^{2}+1} \end{align*}
Writing the ode as
\begin{align*} y&= x p +g \left (p \right ) \end{align*}
We now write \(g\equiv g\left ( p\right ) \) to make notation simpler but we should always remember that \(g\) is function of \(p\)
which in turn is function of \(x\). Hence the above becomes
\begin{align*} y = x p +g\tag {1} \end{align*}
Then we see that
\begin{align*} g&=-\sqrt {p^{2}+1} \end{align*}
Taking derivative of (1) w.r.t. \(x\) gives
\begin{align*} p &=\frac {d}{dx}\left (x p+g\right ) \\ p & =\left ( p+x\frac {dp}{dx}\right ) +\left ( g' \frac {dp}{dx}\right ) \\ p & =p+\left ( x+g'\right ) \frac {dp}{dx}\\ 0 & =\left ( x+g'\right ) \frac {dp}{dx} \end{align*}
Where \(g'\) is derivative of \(g\left ( p\right ) \) w.r.t. \(p\).
The general solution is given by
\begin{align*} \frac {dp}{dx} & =0\\ p &=c_{1} \end{align*}
Substituting this in (1) gives the general solution as
\begin{align*} y = c_2 x -\sqrt {c_2^{2}+1} \end{align*}
The singular solution is found from solving for \(p\) from
\begin{align*} x+g'\left ( p\right ) &=0 \end{align*}
And substituting the result back in (1). Since we found above that \(g=-\sqrt {p^{2}+1}\), then the above equation
becomes
\begin{align*} x+g'\left ( p\right ) &= x -\frac {p}{\sqrt {p^{2}+1}}\\ &= 0 \end{align*}
Solving the above for \(p\) results in
\begin{align*} p_{1} &=y = \sqrt {-\frac {1}{x^{2}-1}}\, \left (x^{2}-1\right ) \end{align*}
Substituting the above back in (1) results in
\begin{align*} y = \sqrt {-\frac {1}{x^{2}-1}}\, \left (x^{2}-1\right ) \end{align*}
Summary of solutions found
\begin{align*}
y &= \sqrt {-\frac {1}{x^{2}-1}}\, \left (x^{2}-1\right ) \\
y &= \left (-x^{2}+1\right ) \sqrt {-\frac {1}{x^{2}-1}} \\
y &= c_1 x +\sqrt {c_1^{2}+1} \\
y &= c_2 x -\sqrt {c_2^{2}+1} \\
\end{align*}
Maple step by step solution
\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & \left (-x \left (\frac {d}{d x}y \left (x \right )\right )+y \left (x \right )\right )^{2}=1+\left (\frac {d}{d x}y \left (x \right )\right )^{2} \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 1 \\ {} & {} & \frac {d}{d x}y \left (x \right ) \\ \bullet & {} & \textrm {Solve for the highest derivative}\hspace {3pt} \\ {} & {} & \left [\frac {d}{d x}y \left (x \right )=\frac {x y \left (x \right )-\sqrt {y \left (x \right )^{2}+x^{2}-1}}{x^{2}-1}, \frac {d}{d x}y \left (x \right )=\frac {x y \left (x \right )+\sqrt {y \left (x \right )^{2}+x^{2}-1}}{x^{2}-1}\right ] \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=\frac {x y \left (x \right )-\sqrt {y \left (x \right )^{2}+x^{2}-1}}{x^{2}-1} \\ \bullet & {} & \textrm {Solve the equation}\hspace {3pt} \frac {d}{d x}y \left (x \right )=\frac {x y \left (x \right )+\sqrt {y \left (x \right )^{2}+x^{2}-1}}{x^{2}-1} \\ \bullet & {} & \textrm {Set of solutions}\hspace {3pt} \\ {} & {} & \left \{\mathit {workingODE} , \mathit {workingODE}\right \} \end {array} \]
Maple trace
`Methods for first order ODEs:
*** Sublevel 2 ***
Methods for first order ODEs:
-> Solving 1st order ODE of high degree, 1st attempt
trying 1st order WeierstrassP solution for high degree ODE
trying 1st order WeierstrassPPrime solution for high degree ODE
trying 1st order JacobiSN solution for high degree ODE
trying 1st order ODE linearizable_by_differentiation
trying differential order: 1; missing variables
trying dAlembert
<- dAlembert successful
<- dAlembert successful`
Maple dsolve solution
Solving time : 0.077
(sec)
Leaf size : 57
dsolve((-diff(y(x),x)*x+y(x))^2 = 1+diff(y(x),x)^2,
y(x),singsol=all)
\begin{align*}
y \left (x \right ) &= \sqrt {-x^{2}+1} \\
y \left (x \right ) &= -\sqrt {-x^{2}+1} \\
y \left (x \right ) &= c_{1} x -\sqrt {c_{1}^{2}+1} \\
y \left (x \right ) &= c_{1} x +\sqrt {c_{1}^{2}+1} \\
\end{align*}
Mathematica DSolve solution
Solving time : 0.174
(sec)
Leaf size : 73
DSolve[{(y[x]-x*D[y[x],x])^2==1+(D[y[x],x])^2,{}},
y[x],x,IncludeSingularSolutions->True]
\begin{align*}
y(x)\to c_1 x-\sqrt {1+c_1{}^2} \\
y(x)\to c_1 x+\sqrt {1+c_1{}^2} \\
y(x)\to -\sqrt {1-x^2} \\
y(x)\to \sqrt {1-x^2} \\
\end{align*}