1.2 problem 10.2.5

1.2.1 Maple step by step solution

Internal problem ID [5046]
Internal file name [OUTPUT/4539_Sunday_June_05_2022_03_00_33_PM_16585502/index.tex]

Book: Basic Training in Mathematics. By R. Shankar. Plenum Press. NY. 1995
Section: Chapter 10, Differential equations. Section 10.2, ODEs with constant Coefficients. page 307
Problem number: 10.2.5.
ODE order: 3.
ODE degree: 1.

The type(s) of ODE detected by this program : "higher_order_linear_constant_coefficients_ODE"

Maple gives the following as the ode type

[[_3rd_order, _missing_x]]

\[ \boxed {x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x=0} \] The characteristic equation is \[ \lambda ^{3}-\lambda ^{2}+\lambda -1 = 0 \] The roots of the above equation are \begin {align*} \lambda _1 &= 1\\ \lambda _2 &= i\\ \lambda _3 &= -i \end {align*}

Therefore the homogeneous solution is \[ x_h(t)=c_{1} {\mathrm e}^{t}+{\mathrm e}^{i t} c_{2} +{\mathrm e}^{-i t} c_{3} \] The fundamental set of solutions for the homogeneous solution are the following \begin {align*} x_1 &= {\mathrm e}^{t}\\ x_2 &= {\mathrm e}^{i t}\\ x_3 &= {\mathrm e}^{-i t} \end {align*}

Summary

The solution(s) found are the following \begin{align*} \tag{1} x &= c_{1} {\mathrm e}^{t}+{\mathrm e}^{i t} c_{2} +{\mathrm e}^{-i t} c_{3} \\ \end{align*}

Verification of solutions

\[ x = c_{1} {\mathrm e}^{t}+{\mathrm e}^{i t} c_{2} +{\mathrm e}^{-i t} c_{3} \] Verified OK.

1.2.1 Maple step by step solution

\[ \begin {array}{lll} & {} & \textrm {Let's solve}\hspace {3pt} \\ {} & {} & x^{\prime \prime \prime }-x^{\prime \prime }+x^{\prime }-x=0 \\ \bullet & {} & \textrm {Highest derivative means the order of the ODE is}\hspace {3pt} 3 \\ {} & {} & x^{\prime \prime \prime } \\ \square & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} x_{1}\left (t \right ) \\ {} & {} & x_{1}\left (t \right )=x \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} x_{2}\left (t \right ) \\ {} & {} & x_{2}\left (t \right )=x^{\prime } \\ {} & \circ & \textrm {Define new variable}\hspace {3pt} x_{3}\left (t \right ) \\ {} & {} & x_{3}\left (t \right )=x^{\prime \prime } \\ {} & \circ & \textrm {Isolate for}\hspace {3pt} x_{3}^{\prime }\left (t \right )\hspace {3pt}\textrm {using original ODE}\hspace {3pt} \\ {} & {} & x_{3}^{\prime }\left (t \right )=x_{3}\left (t \right )-x_{2}\left (t \right )+x_{1}\left (t \right ) \\ & {} & \textrm {Convert linear ODE into a system of first order ODEs}\hspace {3pt} \\ {} & {} & \left [x_{2}\left (t \right )=x_{1}^{\prime }\left (t \right ), x_{3}\left (t \right )=x_{2}^{\prime }\left (t \right ), x_{3}^{\prime }\left (t \right )=x_{3}\left (t \right )-x_{2}\left (t \right )+x_{1}\left (t \right )\right ] \\ \bullet & {} & \textrm {Define vector}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}\left (t \right )=\left [\begin {array}{c} x_{1}\left (t \right ) \\ x_{2}\left (t \right ) \\ x_{3}\left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {System to solve}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}^{\prime }\left (t \right )=\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end {array}\right ]\cdot {\moverset {\rightarrow }{x}}\left (t \right ) \\ \bullet & {} & \textrm {Define the coefficient matrix}\hspace {3pt} \\ {} & {} & A =\left [\begin {array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & -1 & 1 \end {array}\right ] \\ \bullet & {} & \textrm {Rewrite the system as}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}^{\prime }\left (t \right )=A \cdot {\moverset {\rightarrow }{x}}\left (t \right ) \\ \bullet & {} & \textrm {To solve the system, find the eigenvalues and eigenvectors of}\hspace {3pt} A \\ \bullet & {} & \textrm {Eigenpairs of}\hspace {3pt} A \\ {} & {} & \left [\left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ], \left [\mathrm {-I}, \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ]\right ], \left [\mathrm {I}, \left [\begin {array}{c} -1 \\ \mathrm {-I} \\ 1 \end {array}\right ]\right ]\right ] \\ \bullet & {} & \textrm {Consider eigenpair}\hspace {3pt} \\ {} & {} & \left [1, \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution to homogeneous system from eigenpair}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}_{1}={\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Consider complex eigenpair, complex conjugate eigenvalue can be ignored}\hspace {3pt} \\ {} & {} & \left [\mathrm {-I}, \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ]\right ] \\ \bullet & {} & \textrm {Solution from eigenpair}\hspace {3pt} \\ {} & {} & {\mathrm e}^{\mathrm {-I} t}\cdot \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Use Euler identity to write solution in terms of}\hspace {3pt} \sin \hspace {3pt}\textrm {and}\hspace {3pt} \cos \\ {} & {} & \left (\cos \left (t \right )-\mathrm {I} \sin \left (t \right )\right )\cdot \left [\begin {array}{c} -1 \\ \mathrm {I} \\ 1 \end {array}\right ] \\ \bullet & {} & \textrm {Simplify expression}\hspace {3pt} \\ {} & {} & \left [\begin {array}{c} -\cos \left (t \right )+\mathrm {I} \sin \left (t \right ) \\ \mathrm {I} \left (\cos \left (t \right )-\mathrm {I} \sin \left (t \right )\right ) \\ \cos \left (t \right )-\mathrm {I} \sin \left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {Both real and imaginary parts are solutions to the homogeneous system}\hspace {3pt} \\ {} & {} & \left [{\moverset {\rightarrow }{x}}_{2}\left (t \right )=\left [\begin {array}{c} -\cos \left (t \right ) \\ \sin \left (t \right ) \\ \cos \left (t \right ) \end {array}\right ], {\moverset {\rightarrow }{x}}_{3}\left (t \right )=\left [\begin {array}{c} \sin \left (t \right ) \\ \cos \left (t \right ) \\ -\sin \left (t \right ) \end {array}\right ]\right ] \\ \bullet & {} & \textrm {General solution to the system of ODEs}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}=c_{1} {\moverset {\rightarrow }{x}}_{1}+c_{2} {\moverset {\rightarrow }{x}}_{2}\left (t \right )+c_{3} {\moverset {\rightarrow }{x}}_{3}\left (t \right ) \\ \bullet & {} & \textrm {Substitute solutions into the general solution}\hspace {3pt} \\ {} & {} & {\moverset {\rightarrow }{x}}=c_{1} {\mathrm e}^{t}\cdot \left [\begin {array}{c} 1 \\ 1 \\ 1 \end {array}\right ]+\left [\begin {array}{c} -c_{2} \cos \left (t \right )+c_{3} \sin \left (t \right ) \\ c_{2} \sin \left (t \right )+c_{3} \cos \left (t \right ) \\ c_{2} \cos \left (t \right )-c_{3} \sin \left (t \right ) \end {array}\right ] \\ \bullet & {} & \textrm {First component of the vector is the solution to the ODE}\hspace {3pt} \\ {} & {} & x=c_{1} {\mathrm e}^{t}+c_{3} \sin \left (t \right )-c_{2} \cos \left (t \right ) \end {array} \]

Maple trace

`Methods for third order ODEs: 
--- Trying classification methods --- 
trying a quadrature 
checking if the LODE has constant coefficients 
<- constant coefficients successful`
 

Solution by Maple

Time used: 0.015 (sec). Leaf size: 17

dsolve(diff(x(t),t$3)-diff(x(t),t$2)+diff(x(t),t)-x(t)=0,x(t), singsol=all)
 

\[ x \left (t \right ) = c_{1} {\mathrm e}^{t}+c_{2} \sin \left (t \right )+c_{3} \cos \left (t \right ) \]

Solution by Mathematica

Time used: 0.003 (sec). Leaf size: 22

DSolve[x'''[t]-x''[t]+x'[t]-x[t]==0,x[t],t,IncludeSingularSolutions -> True]
 

\[ x(t)\to c_3 e^t+c_1 \cos (t)+c_2 \sin (t) \]